CMR (x+y)(x+y)(x+y)=x^3+3x^2y+3xy^2+y^3
CMR : (X+y)(X+Y)(X+y) =x^3+3x^2y+3xy^2+y^3
(x+y)(x+y)(x+y)=(x+y)3=x3+3x2y+3xy2+y3 (hằng đẳng thức đáng nhớ lớp 8)
=>đpcm
\(\left(x+y\right)\left(x+y\right)\left(x+y\right)=x^3+3x^2y+3xy^2+y^3\)
Bạn nhân vào là ra thôi mà
A=x^3+3^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3 Thu gọn Tìm bậc Tìm giá trị A tạ x =-2,y=1/2
A=2y^3
Bậc là 3
Khi y=1/2 thì A=2*1/8=1/4
CMR: a, (x+y)(x+y)(x+y)=x^3+3xy^2+y b, (x-y)(x-y )(x-y)= x^3-3x^2Y+3y^2
Áp dụng 7 hằng đẳng thức đáng nhớ hoặc khai triển từ một tích ta thu được kết quả:
\(\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)\)
\(\left(x-y\right)^3=x^3-y^3-3xy\left(x-y\right)\)
CMR:
a,x^3+3x^2y+3xy^2-y^3 chia hết cho x^2-2xy+y^2
b,x^3-5x^2+8x-4 chia hết cho x-2
Phân tích đa thức thành nhân tử:
\(x^3+y^3-3x^2+3x-1\)
\(x^3-3x^2y+x+3xy^2-y-y^3\)
\(x^3+y^3-3x^2+3x-1\\=(x^3-3x^2+3x-1)+y^3\\=(x-1)^3+y^3\\=(x-1+y)[(x-1)^2-(x-1)y+y^2]\\=(x+y-1)(x^2-2x+1-xy+y+y^2)\)
\(x^3-3x^2y+x+3xy^2-y-y^3\\=(x^3-3x^2y+3xy^2-y^3)+(x-y)\\=(x-y)^3+(x-y)\\=(x-y)[(x-y)^2+1]\\=(x-y)(x^2-2xy+y^2+1)\)
Phân tích các đa thức sau thành nhân tử : 14x^2y-21xy^2+28x^2y^2 x(x+y)-5x-5y 10x(x-y)-8(y-x ) (3x+1)^2 -(x+1)^2 x^3+y^3+z^3-3xyz 5x^2-10xy+5y^2-20z^2 x^3-x+3x^2y+3x^2y+3xy^2+y^3-y Mn đc lời giải chi tiết từng bước làm 1
\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)
\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
b1 Cho x+y=-1 và xy=-12 tính gt của B:
a,A=x^2+2xy+y^2
b,B=x^2+y^2
c,C=x^3+3x^2y+3xy^2+y^3
d,D=x^3+y^3
b2 cho x-y=-3 và xy=10 tínhN
M=x^2-2xy+y^2
N=x^2+y^2
P=x^3-3x^2y+3xy^2-y^3
Q=x^3-y^3
Bài 2:
\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)
\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)
\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)
Bài 1:
a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)
b) \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)
d) \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)
Chứng minh:
a, (x+y).(x\(^2\)-xy+y\(^2\))=\(x^3\)+\(y^3\)
b, (x+y)\(^3\)= \(x^3+3x^2y+3xy^2+y^3\)
mong m.n giúp đỡ nhiều
a: \(\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)
\(=x^3+y^3\)
b: \(\left(x+y\right)^3=\left(x+y\right)\left(x+y\right)^2\)
\(=\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=x^3+2x^2y+xy^2+2x^2y+2xy^2+y^3\)
\(=x^3+3x^2y+3xy^2+y^3\)
a. Ta có \(\left(x+y\right)\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)=x^3+y^3\)
b. Ta có \(x^3+3x^2y+3xy^2+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)=\left(x+y\right)\left(x^2+2xy+y^2\right)=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)^3\)\(\Rightarrow\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)
Bài 1 : Phân tích các đa thức sau thành nhân tử :
a) \(2x-2y-x^2+2xy-y^2\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
c) \(x^3-xy^2+x^2y-y^2z\)
a) \(=2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
\(=2\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(2-x+y\right)\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+y^3\right)+\left(3x^2+3xy^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+3xy-1\right)\)
\(=\left(x+y\right)\left(x^2+y^2+2xy-1\right)\)