\(x^3+y^3-3x^2+3x-1\\=(x^3-3x^2+3x-1)+y^3\\=(x-1)^3+y^3\\=(x-1+y)[(x-1)^2-(x-1)y+y^2]\\=(x+y-1)(x^2-2x+1-xy+y+y^2)\)
\(x^3-3x^2y+x+3xy^2-y-y^3\\=(x^3-3x^2y+3xy^2-y^3)+(x-y)\\=(x-y)^3+(x-y)\\=(x-y)[(x-y)^2+1]\\=(x-y)(x^2-2xy+y^2+1)\)
\(x^3+y^3-3x^2+3x-1\\=(x^3-3x^2+3x-1)+y^3\\=(x-1)^3+y^3\\=(x-1+y)[(x-1)^2-(x-1)y+y^2]\\=(x+y-1)(x^2-2x+1-xy+y+y^2)\)
\(x^3-3x^2y+x+3xy^2-y-y^3\\=(x^3-3x^2y+3xy^2-y^3)+(x-y)\\=(x-y)^3+(x-y)\\=(x-y)[(x-y)^2+1]\\=(x-y)(x^2-2xy+y^2+1)\)
Phân tích đa thức thành nhân tử
-x^3-x+3x^2y+3xy^2+y^3-Y
phân tích đa thức sau thành nhân tử
x^3+3x^2y+3xy^2+y^3-x-y
Phân tích đa thức thành nhân tử : x^3 - x + 3x^2y + 3xy^3 + y^3 - y
Phân tích các đa thức sau thành nhân tử : 14x^2y-21xy^2+28x^2y^2 x(x+y)-5x-5y 10x(x-y)-8(y-x ) (3x+1)^2 -(x+1)^2 x^3+y^3+z^3-3xyz 5x^2-10xy+5y^2-20z^2 x^3-x+3x^2y+3x^2y+3xy^2+y^3-y Mn đc lời giải chi tiết từng bước làm 1
Phân tích đa thức 3\(x^2\)y + 6\(xy^2\) – 9xy thành nhân tử. Kết quả là:
A. 3(\(x^2y\) + 2\(xy^2\) – 3xy - 3). B. 3y(\(x^2\) + 2xy – 3x). C. xy(3x + 6y - 9). D. 3xy(x + 2y – 3).
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
Phân tích đa thức sau thành nhân tử
a ) 9(x+y-1)^2 - 4 (2x+3y+1)^2
b ) 3x^4y^2 +3x^3y^2 +3xy^2 +3y^2
c ) ( x+y )^3 - 1 -3xy( x + y -1)
d ) x^3 + 3x^2 + 3x +1 - 27z^3
Phân tích đa thức thành nhân tử :
a) \(x^3-x+3x^2y+3xy^2-y\)
Phân tích đa thức sau thành nhân tử
a ) 9(x+y-1)^2 - 4 (2x+3y+1)^2
b ) 3x^4y^2 +3x^3y^2 +3xy^2 +3y^2
c ) ( x+y )^3 - 1 -3xy( x + y -1)
d ) x^3 + 3x^2 + 3x +1 - 27z^3
Giúp với ạ ! Cảm ơn