Cho x+y=1,xy khác 0. CMR: x/(y3-1)-y/(x3-1)+2(x+y)/(x2+y2)=0.Giải giúp mik nha, mik đang cần gấp.
Cho x,y là 2 đại lượng tỉ lệ thuận ; x1,x2,x3 là 3 giá trị khác nhau của x với x1-x2=3(x3-x2+672)
y1,y2,y3 là 3 giá trị tương ứng của y thỏa y2+y3=y1+5(y2-403) / 3
Viết công thức liên hệ x và y.
MẤY BẠN GIẢI GIÚP MIK NHANH NHÉ MIK ĐG CẦN GẤP LẮM !!!
Mình đang cần gấp! Giúp mình với ạ
Bài 3: Chứng minh rằng:
a) (x+y+z)2= x2+y2+z2+2xy+2xz+2yz
b) (x-y).(x2+y2+z2-xy-yz-xz)= x3+y3+z3-3xyz
c) (x+y+z)3= x3+y3+z3+3.(x+y).(y+z).(z+x)
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
c,
(\(x\) + y + z)3
=(\(x\) + y)3 + 3(\(x\) + y)2z + 3(\(x\)+y)z2 + z3
= \(x^3\) + 3\(x^2\)y + 3\(xy^{2^{ }}\) + y3 + 3(\(x\)+y)z(\(x\) + y + z) + z3
= \(x^3\) + y3 + z3 + 3\(xy\)(\(x\) + y) + 3(\(x+y\))z(\(x+y+z\))
= \(x^3\) + y3 + z3 + 3(\(x\) + y)( \(xy\) + z\(x\) + yz + z2)
= \(x^3\) + y3 + z3 + 3(\(x\) + y){(\(xy+xz\)) + (yz + z2)}
= \(x^3\) + y3 + z3 + 3(\(x\) + y){ \(x\)( y +z) + z(y+z)}
= \(x^3\) + y3 + z3 + 3(\(x\) + y)(y+z)(\(x+z\)) (đpcm)
Cho x>0, y>0, nếu x<y hãy chứng tỏ rằng:
a) x2<xy và xy<y2
b) x2<y2 và x3<y3
Giúp mình với mình đang cần gấp ạ.
a) x<y
<=> x.x<x.y
<=> x\(^2\)<xy
x<y
<=> x.y<y.y
<=>xy<y\(^2\)
b) áp dụng kết quả từ câu a và tính chất bắc cầu, ta có:
x\(^2\)<xy<y\(^2\)
<=> x\(^2\)<y\(^2\)
x\(^2\)<y\(^2\)
=> x\(^2\).y<y\(^2\).y
<=> x\(^2\)y<y\(^3\)(1)
x\(^2\)<y\(^2\)
=> x\(^2\).x<y\(^2\).x
<=> x\(^3\)<xy\(^2\)(2)
x<y
<=> x.xy<y.xy
<=> x\(^2\)y<xy\(^2\)(3)
Từ (1),(2) và (3) ta có
x\(^3\)<y\(^3\)
1 .cho x + y = 2 và x2 + y2 = 16 . Tính x3 + y3
2. cho x + y = 8 và xy = -20 . Tính x2 + y2 ; x3 + y3 ; và x2 + xy + y2
giúp ạ , cảm cơn
1)
Ta có: x+y=2
nên \(\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy=2\)
hay xy=1
Ta có: \(x^3+y^3\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=2^3-3\cdot1\cdot2\)
=2
2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)
\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)
Cho x,y,z>0 xyz=1 CMR :
\(\frac{xy}{x^5+xy+y^5}+\frac{yz}{y^5+yz+z^5}+\frac{xz}{x^5+xz+y^5}\le1\)
giúp mik nha đang cần gấp
c) C = x(y2 +z2)+y(z2 +x2)+z(x2 +y2)+2xyz.
d) D = x3(y−z)+y3(z−x)+z3(x−y).
e) E = (x+y)(x2 −y2)+(y+z)(y2 −z2)+(z+x)(z2 −x2).
b) x2 +2x−24 = 0.
d) 3x(x+4)−x2 −4x = 0.
f) (x−1)(x−3)(x+5)(x+7)−297 = 0.
(2x−1)2 −(x+3)2 = 0.
c) x3 −x2 +x+3 = 0.
e) (x2 +x+1)(x2 +x)−2 = 0.
a) A = x2(y−2z)+y2(z−x)+2z2(x−y)+xyz.
b) B = x(y3 +z3)+y(z3 +x3)+z(x3 +y3)+xyz(x+y+z). c) C = x(y2 −z2)−y(z2 −x2)+z(x2 −y2).
Đề bài yêu cầu gì vậy em.
cho x+y=1 va xy khac 0 cmr x/(y3-1)-y/(x3-1)+2(x-y)/(x2y2+3)=0
bài 1:. So sánh: 200920 và 2009200910
bài 2:
Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
bài 3: Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
bài 4:Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
ko khó đâu :))
Bài 1: Ta có 200920 = (20092)10 = (2009.2009)10
2009200910 = (10001.2009)10
Mà 2009 < 10001 ➩ (2009.2009)10 < (10001.2009)10
Vậy 200920 < 2009200910
Bai 3:
Theo giả thiết suy ra các tích x1x2 , x2x3 , ...., xnx1 chỉ nhận một trong hai giá trị là 1 và -1
Do đó x1x2 + x2x3 +...+ xnx1 = 0 <=> n = 2m
=> Đồng thời có m số hạng bằng 1 và m số hạng bằng -1
Nhận thấy : (x1x2)(x2x3)...(xnx1) = x12x22...xn2 = 1
=> Số các số hạng bằng -1 phải là số chẵn
=> m = 2k
Suy ra n = 2m = 2.2k = 4k
=> n chia hết cho 4
bai 2:
25−y²=8(x−2009)
⇒25−y²=8x−16072
⇒8x=25−y²−16072
⇒8x=25−16072−y²
⇒8x=−16047−y²
8×−16047−y²8=−16047−y²
⇒−16047−y²=−16047−y²
⇒y có vô giá trị nhé (y∈R)
Vậy
Bài toán 2. Tính tỉ số , biết:
Bài toán 3. Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Bài toán 5. Chứng minh rằng:
Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
làm ơn giúp mình
10:
Vì n là số lẻ nên n=2k-1
Số số hạng là (2k-1-1):2+1=k(số)
Tổng là (2k-1+1)*k/2=2k*k/2=k^2 là số chính phương
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc {1;5;13;65}
=>\(n\in\left\{0;2;-2;2\sqrt{3};-2\sqrt{3};8;-8\right\}\)