25.Cho ABC vuông tại A có AC = 20cm. Kẻ AH ┴BC tại H.Biết BH= 9cm, HC=16cm. Tính AB và AH.
Cho tam giác ABC vuông ở A có AC=20cm. Kẻ AH vuông góc BC. Biết BH=9cm;HC=16cm. Tính AB,AH
A. AH=12cm;AB=15cm
B. AH=10cm;AB=15cm
C. AH=15cm;AB=12cm
D. AH=12cm;AB=13cm
Lg
*Áp dụng định lý py-ta-go ta có: (Δ AHC)
AC2=AH2+HC2
202=AH2+162
400=AH2+256
AH2=144
AH=√144 =12
*Áp dụng định lý py-ta-go ta có: (Δ AHB)
AB2=AH2+BH2
AB2=122+92
AB2=225
AB=√225 =15
Mình đang cần gấp bài này. Mong các bạn giúp mình nhé. Cảm ơn các bạn
Bài 3: Cho tam giác ABC vuông tại A có AC=20cm. Kẻ AH vuông góc với BC. Biết BH=9cm,HC=16cm. Tính độ dài cạnh AB, AH?
Bài 6: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H. Cho BH=2cm,AB=4cm. Tính chu vi tam giác ABC.
Bài 3 :
\(BC=HC+HB=16+9=25\left(cm\right)\)
\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)
\(\Rightarrow AB=15\left(cm\right)\)
\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)
Bài 6:
\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)
\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC)
\(BC=BH+HC=2+2=4\left(cm\right)\)
Chu vi Δ ABC :
\(4+4+4=12\left(cm\right)\)
Cho tam giác ABC vuông tại A có AC=20cm. Kẻ AH vuông góc BC. Biết BH=9cm, HC=16cm. Tính AB, AH
CẦN GẤP LÀM ĐÚNG SẼ TK!!!!!!!!!!!!
Không cần vẽ hình
Ta có : BC = BH + HC = 9 + 16 = 25 (cm)
Tam giác ABC vuông tại A nên :
BC2 = AB2 + AC2
252 = AB2 + 162
=> AB2 = 252 - 202
AB2 = 625 - 400 = 225 = 152
=> AB = 15 (cm)
Tam giác AHC vuông tại H nên :
AC2 = AH2 + HC2
202 = AH2 + 162
=> AH2 = 202 - 162
AH = 400 - 256 = 144 = 122
=> AH = 12 (cm)
Vậy AB = 15 cm ; AH = 12 cm
Tham khảo link này nek:
https://h.vn/hoi-dap/question/168012.html
# mui #
TL:
Ta có : BC = BH + HC = 9 + 16 = 25 (cm)
Tam giác ABC vuông tại A nên :
\(\text{BC^2 = AB^2 + AC^2}\)
\(\text{25^2 = AB^2 + 16^2}\)
\(=>AB^2 = 25^2 - 20^2\)
\(AB^2=625-400=225=15^2\)
=> AB = 15 cm
Tam giác AHC vuông tại H nên :
\(AC^2=AH^2+HC^2\)
\(20^2=AH^2+16^2\)
=> AH^2 = 20^2 - 16^2
AH = 400-256 = 144= 12^2
=> AH=12 (cm)
Vậy AB = 15 cm ; AH= 12 cm
Học tốt
Cho ∆ABC vuông tại A có đg cao AH. Trong các đoạn thẳng sau:AB,AC,BC,AH,BH,HC, hãy tính các đoạn thẳng còn lại nếu biết: a)AB=6cm,BC=10cm b)AC=20cm,BC=25cm c)AB=12cm,AC=16cm d)BH=9cm,HC=6cm
a)AB=6cm,BC=10cm
∆ABC vuông tại A đg cao AH có
#\(AC^2=BC^2-AB^2\)
AC2=100-36=64
AC=8cm
# \(AB^2=BH.BC\)
36=BH.10
BH=3,6cm
# CH=BC-BH=10-3,6=6,4cm
# \(AH^2=BH.CH\)
AH2=3,6.6,4=23,04
AH=4,8cm
b)
∆ABC vuông tại A đg cao AH có
#\(AB^2=BC^2-AC^2\)
AB2=625-400=225
AB=15cm
# \(AB^2=BH.BC\)
225=BH.25
BH=9cm
# CH= BC-BH=25-9=16cm
# \(AH.BC=AB.AC\)
AH.25=15.20=300
AH=12cm
d: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC biết BH=9cm, HC=16cm. Tính AB,AC
BC=25cm
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
=>AC=20cm
Cho tam giác ABC vuông tại A có AC = 20cm, kẻ AH vuông góc với BC biieets BH= 9cm, HC= 16cm.Tính AB, AH
bạn dùng định lý pitago thì biết ngay mà
bạn lên google
tìm hệ thức lượng trong tam giác là có CT giải bài này cực nhanh luôn!
cho tam giác abc vuông tại a kẻ AH vuông góc với BC biết BH =9cm,AC=20cm,ab=15cm tính hc
△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(\Rightarrow CH=BC-BH=25-9=16\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=25-9=16(cm)
Vậy: CH=16cm
câu 1 Cho tam giác ABC có các góc B, C nhọn. Kẻ AH vuông góc với BC. Biết AB = 20cm, BH = 16cm, HC = 5cm. Tính AH, AC.
câu 2 Cho tam giác ABC có các góc B, C nhọn. Kẻ AH vuông góc với BC, biết AC = 15cm, HB = 5cm, HC = 9cm . Tính độ dài cạnh AB.
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm
cho tam giác ABC vuông tại A cs AC= 20cm. Kẻ AH vuông góc vưới BC. Biết BH =9cm, HC=16cm. Tính AB, AH
\(BC=BH+HC=9+6=25\left(cm\right)\)
Áp dụng định lý Py-ta-go với tam giác ABC vuông tại A, ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB^2=BC^2+AC^2=25^2-20^2\)
\(=625-400=225=15^2\)
Vậy AB=15cm
Áp dụng định lý Py-ta-go với tam giác AHC vuông tại H, ta có:
\(AH^2=AC^2-HC^2=20^2-16^2=12^2\)
Vậy AH= 12cm