x^2-2021-2022=0
Cho \(\dfrac{x}{2020}+\dfrac{y}{2021}+\dfrac{z}{2022}=1\) và \(\dfrac{2020}{x}+\dfrac{2021}{y}+\dfrac{2022}{z}=0\) \(\left(x,y,z\ne0\right)\)
Chứng minh rằng \(\dfrac{x^2}{2020^2}+\dfrac{y^2}{2021^2}+\dfrac{z^2}{2022^2}=1\)
cho x,y,z khác 0 thoả mãn x+y+z=2022 và 1/x+1/y+1/z=1/2022 CMR: 1/x^2021+1/y^2021+1/z^2021=1/x^2021+y^2021+z^2021
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2022}\)
\(\Rightarrow\dfrac{yz+zx+xy}{xyz}=\dfrac{1}{x+y+z}\)
\(\Rightarrow\left(yz+zx+xy\right)\left(x+y+z\right)=xyz\)
\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz-xyz=0\)
\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz=0\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Rightarrow x=-y\) hoặc \(y=-z\) hoặc \(z=-x\).
-Đến đây thôi bạn, câu hỏi sai rồi ạ.
x - 2021/2020 + x-2021/2021 - x- 2021/2022 - x- 2021/2023= 0
x= 2002/3000
ko bt đúng ko mong bn nhắc nhở
Cho x,y,z khác 0 thỏa mãn x+yz=2022 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2022\)
CMR: \(\dfrac{1}{x^{2021}}+\dfrac{1}{y^{2021}}+\dfrac{1}{z^{2021}}=\dfrac{1}{x^{2021}+y^{2021}+z^{2021}}\)
Tìm x,y biết: (x - 2021)2 + (y + 2022)2 = 0
<=> x-2021=0 và y+2022=0
=>x=2021 và y=-2022
Vì \(\left(x-2021\right)^2\ge0,\left(y+2022\right)^2\ge0\)
\(\Rightarrow\left(x-2021\right)^2+\left(y+2022\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2021=0\\y+2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\y=-2022\end{matrix}\right.\)
Vậy \(\left(x,y\right)=\left(2021,-2022\right)\)
Chứng minh x-1/2021+x-2/2022-x+2023/2023=0
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
tìm x, y thuộc Z biết (x-2021)^2+(x-2022)^2022=2022^y-2021
tìm x, y thuộc Z biết (x-2021)^2+(x-2022)^2022=2022^y-2021
Tìm giá trị của x + y biết |2022-2x+y|+(x-y-2021)2=0
Có: \(\left|2022-2x+y\right|\ge0\forall x,y\)
\(\left(x-y-2021\right)^2\ge0\forall x,y\)
\(\Rightarrow\left|2022-2x+y\right|+\left(x-y-2021\right)^2\ge0\forall x,y\)
Mặt khác: \(\left|2022-2x+y\right|+\left(x-y-2021\right)^2=0\)
nên \(\left\{{}\begin{matrix}2022-2x+y=0\\x-y-2021=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-2x+y=-2022\\x-y=2021\end{matrix}\right.\)
\(\Rightarrow-2x+y+x-y=-2022+2021\)
\(\Rightarrow-x=-1\Leftrightarrow x=1\)
Khi đó: \(1-y=2021\) \(\Leftrightarrow y=-2020\)
\(\Rightarrow x+y=1-2020=-2019\)
|2022-2x+y|+(x-y-2021)^2=0
=>2022-2x+y=0 và x-y-2021=0
=>x-y=2021 và 2x-y=2022
=>x=1 và y=-2020
kết quả là -2023 nhé mọi ng mình biết kqua nhm k biết trình bày =))