Cho x>0 y>0 x+y\(\ge\)4 Tìm min :\(A=\frac{3x^2+4}{4x}+\frac{y^2+2}{y^2}\)
Cho x , y > 0 ; x + y \(\ge\)4 . Tìm GTNN của :
A = \(\frac{3x^2+4}{4x}+\frac{2+y^3}{y^2}\)
hóng với ai biết làm chỉ công thức đê , cho chúa Pain làm với :))
\(A=\frac{3x^2+4}{4x}+\frac{2+y^3}{y^2}=\frac{3x^2}{4x}+\frac{4}{4x}+\frac{2}{y^2}+\frac{y^3}{y^2}\)
\(=\frac{3x}{4}+\frac{1}{x}+\frac{2}{y^2}+y=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{1}{2}x+\frac{1}{2}y+\frac{2}{y^2}+\frac{1}{2}y\)
\(=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{1}{2}\left(x+y\right)+\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}\)
\(=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{x+y}{2}+\left(\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}\right)\)
Áp dụng BĐT Cô-si ta có :
\(\frac{1}{x}+\frac{x}{4}\ge2\sqrt[2]{\frac{1}{x}.\frac{x}{4}}=2\sqrt[2]{\frac{x}{4x}}=2\sqrt[2]{\frac{1}{4}}=2.\frac{1}{2}=1\)
\(\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}\ge3\sqrt[3]{\frac{2}{y^2}.\frac{y}{4}.\frac{y}{4}}=3\sqrt[3]{\frac{2.y.y}{y^2.4.4}}=3\sqrt[3]{\frac{2y^2}{16y^2}}=3.\sqrt[3]{\frac{1}{8}}=\frac{3}{2}\)
Và theo giả thiết ta có \(x+y\ge4\Leftrightarrow\frac{x+y}{2}\ge2\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(\left(\frac{1}{x}+\frac{4}{x}\right)+\left(\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}\right)+\frac{x+y}{2}\ge1+\frac{3}{2}+2=\frac{9}{2}\)
Dấu = xảy ra khi và chỉ khi \(x=y=2\)
Vậy \(Min_A=\frac{9}{2}\)đạt được khi \(x=y=2\)
Cho x,y>0 và x+y≥4. Tìm GTNN của A= \(\frac{3x^2+4}{4x}+\frac{2+y^3}{y^2}\)
\(A=\frac{3x}{4}+\frac{1}{x}+\frac{2}{y^2}+y=\frac{x}{4}+\frac{1}{x}++\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}+\frac{x}{2}+\frac{y}{2}\)
\(\Rightarrow A\ge2\sqrt{\frac{x}{4}.\frac{1}{x}}+3\sqrt[3]{\frac{2}{y^2}.\frac{y}{4}.\frac{y}{4}}+\frac{1}{2}\left(x+y\right)=1+\frac{3}{2}+2=\frac{9}{2}\)
\(\Rightarrow A_{min}=\frac{9}{2}\) khi \(x=y=2\)
Cho x > 0, y>0 và x + y \(\ge\)4. Tìm giá trị nhỏ nhất của \(\text\AA=\frac{3x^2+4}{4x}+\frac{2+y^3}{y^2}\)
1.cho a, b , c >0 . Chứng minh \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
2. Cho x , y , z \(\ge\)0 thỏa mãn x+y+z =2
tìm Min P = \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
1.
Áp dụng bất đẳng thức AM - GM cho 2 số dương ta có:
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)
tương tự, ta có:
\(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ac}{b}}=2c\)
\(\frac{ab}{c}+\frac{ac}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ac}{b}}=2a\)
Cộng theo vế của 3 BĐT trên, ta được:
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\) (ĐPCM)
ý b nghĩ đã ~.~
2.
P = \(\frac{x^2}{2-x}+\frac{y^2}{2-y}+\frac{z^2}{2-z}\)
Sau đó áp dụng bất đẳng thức AM - GM như trên nhé bạn!
mik vẫn chưa hình dung cách lm câu b của bạn kia,,,,,
theo mik thì tek này nè: \(\frac{x^2}{y+z}+\frac{y+z}{4}\ge x\)
lm tương tự r cộng lại,,,ok???
Cho \(x>0,y>0\)và\(2x+3x\le2\). Tìm Min \(A=\frac{4}{4x^2+9y^2}+\frac{9}{xy}\)
1. Cho a, b là các hằng số dương. Tìm min A=x+y biết x>0, y>0; \(\frac{a}{x}+\frac{b}{y}=1\)
2.Tìm \(a\in Z\), a#0 sao cho max và min của \(A=\frac{12x\left(x-a\right)}{x^2+36}\)cũng là số nguyên
3. Cho \(A=\frac{x^2+px+q}{x^2+1}\) . Tìm p, q để max A=9 và min A=-1
4. Tìm min \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\) với x,y,z>0 ; \(x^2+y^2+z^2\le3\)
5. Tìm min \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\) với \(x+y\ge6\)
6. Tìm min, max \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\) với \(0\le x\le3\)
7.Tìm min \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\) với x>0, y>0; x+y=1
8.Tìm min, max \(P=x\left(x^2+y\right)+y\left(y^2+x\right)\) với x+y=2003
9. Tìm min, max P = x--y+2004 biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
10. Tìm mã A=|x-y| biết \(x^2+4y^2=1\)
Cho các số thực x,y thỏa mãn x+y\(\ge\)4.Chứng minh
A=\(\frac{3x^2+4}{4x}\)+\(\frac{3y^2+2}{4y}\)\(\ge\)4
Lời giải:
Áp dụng BĐT Cô-si:
\(A=\frac{3}{4}x+\frac{1}{x}+\frac{3}{4}y+\frac{1}{y}=\frac{1}{2}(x+y)+(\frac{x}{4}+\frac{1}{x})+(\frac{y}{4}+\frac{1}{y})\)
\(\geq \frac{1}{2}.4+2\sqrt{\frac{x}{4}.\frac{1}{x}}+2\sqrt{\frac{y}{4}.\frac{1}{y}}=4\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=2$
Cho x, y, z>0 và x+y+z\(\ge\)1. tìm Min A =\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z+\frac{1}{z^2}}\)
Cho x+y>0. Tìm min \(A=\frac{1+2^{x+y}}{1+4^x}+\frac{1+2^{x+y}}{1+4^y}\)
Đặt \(\hept{\begin{cases}2^x=a\\2^y=b\end{cases}}\) thì ta có: \(A=\frac{1+ab}{1+a^2}+\frac{1+ab}{1+b^2}\)
Ta cần chứng minh \(2\) là GTNN của A (khi x=1,02171...;y=1,02171... và x=y=1,04019...)
\(\Leftrightarrow\left(1+ab\right)\left(\frac{1}{1+a^2}+\frac{1}{1+b^2}\right)\ge2\)
Và điều này tương đương với \(\frac{\left(ab-1\right)\left(a-b\right)^2}{\left(a^2+1\right)\left(b^2+1\right)}\ge0\)
Cái này đúng nếu \(ab\ge1\)