VẼ HÌNH VÀ GIẢI GIÚP MÌNH VỚI. Cho ∆ABC vuông tại A, biết AB=8cm, AC= 6cm
Giải đầy đủ giúp mình với ạ vẽ hình lời giải chi tiết ạ mình cần gấp lắm
bài 1. Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm và AH là đường cao
a/ Gọi E,F lần lượt là hình chiếu của H trên AC, AB, CMR: AF XAB=AE X AC; AH mủ 3= BF x CE x BC
b/ tính EF
c/ Gọi AD là phân giác góc BAC, D thuộc BC. Tính DB, DC
a: Xét ΔABH vuông tại H có HF là đường cao ứng với cạnh huyền AB
nên \(AF\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)
Cho tam giác ABC vuông tại A phân giác góc ABC cắt AC tại D vẽ DE vuông góc với BC tại E. DE cắt BA tại F. Qua C kẻ đường thẳng vuông góc với Ac. Cắt BD kéo dài tại K.
a) Tính BC, biết ab = 6cm,ac=8cm
b) tính AB=AE
c) CM: tam giác BCF cân
d) So sánh CK và AC
vẽ hình ra hộ mình nhé
Giải giúp mình với, mình cần gấp ạ! Không cần vẽ hình cũng đc ạ, Mình cảm ơn rất nhiều!!
Cho tam giác ABC vuông tại A, có AB = 6cm; AC = 8cm. Kẻ phân giác AD của góc A (D BC). Tính AD (làm tròn kết quả đến chữ số thập phân thứ hai).
(Gợi ý: Kẻ đường cao AH của tam giác ABC).
Cho hình vẽ biết tam giác ABC vuông tại A, AM là đương trung tuyến. AB= 6cm, AC= 8CM. Tính AM
Áp dụng PTG: \(BC^2=AB^2+AC^2=100\Rightarrow BC=10\left(cm\right)\)
Vì AM là trung tuyến ứng với cạnh huyền BC nên \(AM=\dfrac{1}{2}BC=5\left(cm\right)\)
Mn ơi giúp mik vs mik cần hình và loi giai đầy đủ ạ.Mình cảm ơn <3
Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của BC
a: góc AEH=1/2*180=90 độ
=>HE vuông góc AB
góc AFH=1/2*180=90 độ
=>HF vuông góc AC
Vì góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
b: AEHF làhình chữ nhật
=>góc AFE=góc AHE=góc B
=>góc B+góc FCB=180 độ
=>BEFC nội tiếp
giải giúp em vs ạ
cho tam giác ABC vuông tại A , có AB =6cm ,AC =8cm , Vẽ trung tuyến AM của tam giác ABC . Lấy N là đối xứng với A qua M
a, Tính AM
b, Tứ giác ABNC là hình gì ? Vi sao ?
c, Vẽ MI vuông góc với AC (I thuộc AC) .Lấy K đối xứng M qua I . Chứng minh AMCK là hình thoi
giải thik các bước giải ạ
a/ Xét △ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
- AM là đường trung tuyến của △ABC vuông tại A
\(\Rightarrow AM=MB=MC=\dfrac{BC}{2}\)
\(\Rightarrow AM=\dfrac{10}{2}=5\left(cm\right)\)
Vậy: \(AM=5cm\)
==========
b/ Tứ giác ABNC là hình chữ nhật vì:
- M là trung điểm của BC (gt) và AN (N đối xứng với A qua M)
⇒ ABNC là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành)
- ABNC có \(\hat{A}=90\text{°}\left(gt\right)\)
Vậy: ABNC là hình chữ nhật (Hình bình hành có một góc vuông là hình chữ nhật)
==========
c/ Ta có:
- \(IM=IK\left(gt\right);\hat{MIC}=90\text{°}\left(gt\right)\)
⇒AC là đường trung trực của MK \(\left(1\right)\)
- Mặt khác:
-Xét △CIM và △AIM có:
+ \(\hat{MIC}=\hat{MIA}=90\text{°}\left(gt\right)\)
+ \(IM\text{ }chung\)
+\(AM=MC\) (AM là trung tuyến của △ABC vuông tại A)
⇒ \(\text{△CIM = △AIM(c.h-c.g.v)}\)
\(\Rightarrow IA=IC\). Mà \(\hat{MIC}=90\text{°}\)
⇒MK là đường trung trực của AC \(\left(2\right)\)
Từ (1) và (2). Vậy: Tứ giác AMCK là hình thoi (Tứ giác có hai đường chéo là đường trung trực của nhau là hình thoi)
cho tam giác ABC vuông tại A có đg cao AH. Vẽ HE vuông góc với AB tại E, HF vuông góc với AC tại F
chứng minh BE=BC\(\times\cot^3B\)
biết AB= 6cm, AC=8cm
Sửa đề: \(BE=BC\cdot cos^3B\)
Xét ΔAHB vuông tại H có \(cosB=\dfrac{BH}{BA}\)
Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC}\)
Xét ΔBEH vuông tại E có \(cosB=\dfrac{BE}{BH}\)
\(cos^3B=cosB\cdot cosB\cdot cosB\)
\(=\dfrac{BH}{BA}\cdot\dfrac{BA}{BC}\cdot\dfrac{BE}{BH}\)
\(=\dfrac{BE}{BC}\)
=>\(BE=BC\cdot cos^3B\)
Cho tam giác ABC vuông tại A đường cao AH
a) chứng minh Δ ABC đồng dạng Δ BHA
b) cho AB=6cm, AC=8cm. Tính BC, AC
c) Vẽ HE vuông góc AB tại E, HF vuông góc AC tại F. Chứng minh AE.AB=AF.AC (mn giải giúp câu c vs ạ)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
c: ΔABH vuông tại H
mà HE là đường cao
nên AE*AB=AH^2
ΔACH vuông tại H có HF là đường cao
nên AF*AC=AH^2=AE*AB
Cho tam giác ABC vuông tại A vẽ đường cao AH, AB=6cm;AC=8cm
a) Chứng minh: tam giác HAC đồng dạng với tam giác ABC
b) Chứng minh: BH/AB=AH/AC
c) Gọi D là chân đường phân giác kẻ từ B, tính CD?
mn ơi giúp mình câu b và c với ạ
a.Góc H bằng Góc A, Góc C chung vậy HAC đồng dạng ABC