x2-2020x+4036
Rút gọn:
a) A=(5-2x)2-4x(x-5)
b) B= (4-3x)(4+3x)+(3x+1)2
c) C= (x+1)3-x(x2+3x+3)
d) D=(2021x-2020)2-2(2021x-2020)(2020x-2021)+(2020x-2021)
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
cho khai triển \(\left(2018x^2+x+2018\right)^{2018}=a_0+a_1x+a_2x^2+...+a_{4036}x^{4036}\)
tính \(T=a_0-a_2+a_4-...-a_{4032}+a_{4036}\)
f(x) = x^6 -2020x^5+2020x^4-2020x^3+2020x^2-2020x+2020
Tính f(2019)
f(x) = \(\left(x^6-2019x^5\right)-\left(x^5-2019x^4\right)+\left(x^4-2019x^3\right)-\left(x^3-2019x^2\right)+\left(x^2-2019x\right)-\left(x-2019\right)+1\)
= \(x^5\left(x-2019\right)-x^4\left(x-2019\right)+x^3\left(x-2019\right)-x^2\left(x-2019\right)+x\left(x-2019\right)-\left(x-2019\right)+1\)
Thay x = 2019 vào f(x), ta có:
f(2019) = 0 + 0 + 0 + 0 + 0 +0 + 1 = 1
Phân tích đa thức thành nhân tử
a/ 3x3y2-12x2y3
b/x2-5x+xy-5y
c/x4+64y
d/2x2-4xy+2y2-18
e/x3-2020x2+2020x-2019
giúp em cần gấp ạ
Cho f(x)=x^100-2020x^99+2020x^98-...+2020x^2-2020x+2000
Tính f(2019)
\(f\left(2019\right)=x^{100}-\left(2019+1\right)x^{99}+\left(2019+1\right)x^{98}-....+\left(2019+1\right)x^2-\left(2019+1\right)x+2000\)
\(=x^{100}-\left(x+1\right)x^{99}+\left(x+1\right)x^{98}-...+\left(x+1\right)x^2-\left(x+1\right)x+2000\)
\(=x^{100}-x^{100}-x^{99}+x^{99}+x^{98}-...+x^3+x^2-x^2-x+2000\)
\(=-x+2000=-2019+2000\)
\(=-19\)
F(x)=x^2019-2020x^2018+2020x^2017-2020x^2016+...+2020x-2020 tại x= 2019
\(x^{2019}-2020x^{2018}+2020x^{2017}-2020x^{2016}+...+2020x-2020\)
tại x=2019
\(x^{2019}-2020x^{2018}+2020x^{2017}-2020x^{2016}+...+2020x-2020\)
tại x=2019
\(x^{2019}-2020x^{2018}+2020x^{2017}-2020x^{2016}+...+2020x-2020\)
\(=x^{2019}-2019x^{2018}-x^{2018}+2019x^{2017}+x^{2017}\)
\(-2019x^{2016}-x^{2016}+...+2019x+x-2020\)
\(=x^{2018}\left(x-2019\right)-x^{2017}\left(x-2019\right)+x^{2016}\left(x-2019\right)\)
\(+...-x\left(x-2019\right)+\left(x-2019\right)-1\)
\(=-1\)
Cho x=2019
Tính A= x6-2020x5+2020x4-2020x3+2020x2-2020x+2020
2020.2019^5 = (2019+1).2019^5 = 2019^6+2019^5 làm tương tự với các x còn lại
A= 2019^6 - 2019^6 +.....-2019^2-2019 +2020 = 1 vậy A=1
ta có x = 2019 \(\Rightarrow\)2020 = x+1
thay 2020 = x+1 vào A ta có
\(A=x^6-\left(x+1\right).x^5+\left(x+1\right).x^4-...-\left(x+1\right).x+2020\)
\(=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2020\)
\(=-x+2020\)
\(=-2019+2020\)
\(=1\)
vậy A = 1
học tốt !!!