Cho đa giác đều \(A_1A_2...A_{2n}\left(n\ge2,n\in N\right).\) Biết rằng số vecto khác vecto 0 có điểm đầu và điểm cuối thuộc tập hợp điểm \(\left\{A_1,A_2,...,A_{2n}\right\}\) bằng 9 lần số hình chữ nhật có các đỉnh thuộc tập hợp điểm \(\left\{A_1,A_2,...,A_{2n}\right\}\). Tìm n
\(S=\left(C^1_{2018}\right)^2+2\left(C_{2018}^2\right)^2+...+2018\left(C_{2018}^{2018}\right)^2\)
Tính tổng
Viết khai triển Niutơn;
\(a,\left(\dfrac{1}{x}-\dfrac{x^2}{3}\right)^5\)
\(b,\left(\sqrt{2}x+1\right)^5\)
Trong khai triển \(P\left(x\right)=\left(3-2x\right)^9\) , hãy tính tổng các hệ số của đa thức P(x).
Cho 1 đa giác đều 12 đỉnh \(A_1A_2A_3A_4....A_{12}\) nội tiếp đường tròn (O). Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất để 4 đỉnh được chọn tạo ra thành 1 hình chữ nhật
Biết tổng các hệ số của khai triển \(\left(3-x^2\right)^n\)bằng 1024. Hệ số của số hạng chứa \(x^{12}\) trong khai triển đó bằng bao nhiêu?
tìm hệ số \(x^3\) trong khai triển \(\left(\dfrac{1}{\sqrt[3]{x}}+2\sqrt{x}\right)^8\)
Cho biểu thức \(P=\left(\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}-\frac{x-1}{x-\sqrt{x}}\right)^{10}\) với x > 0, \(x\ne1\). Tìm số hạng không chứa x trong khai triển Newton của P ?
Tìm hệ số không chứa x trong khai triển :
\(f\left(x\right)=\left(\sqrt[3]{x}+\frac{2}{\sqrt{x}}\right)^{15}\)