Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 3 2017 lúc 15:33

Giải sách bài tập Toán 10 | Giải sbt Toán 10

⇒(a + 1)(b + 1)(a + c)(b + c) ≥ 16abc.

Lê Hoài Phương
Xem chi tiết
Tuấn
27 tháng 11 2015 lúc 12:29

Áp dụng bđt coossi ta dduowcj : \(a+b+c\ge2\sqrt{a\left(b+c\right)}\Rightarrow1\ge4a\left(b+c\right)\Rightarrow b+c\ge4a\left(b+c\right)^2\)
Mà \(\left(b+c\right)^2\ge4bc\Rightarrow b+c\ge16abc\)
Dấu = xảy ra khi a=b+c và b=c và a+b+c=1=>a=1/2;b=c=1/4

doan thi thuan
6 tháng 5 2018 lúc 22:52

tại sao lại ra thế hả bạn

0o0^^^Nhi^^^0o0
Xem chi tiết
hattori heiji
4 tháng 4 2018 lúc 13:26

Áp dụng BĐT cô si cho 2 số không âm

\(b+c\ge2\sqrt{bc}\)

<=>\(\left(b+c\right)^2\ge4bc\) (1)

Áp dụng BĐT cô si cho 2 số không âm

\(a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\)

<=>\(\left[a+\left(b+c\right)\right]^2\ge4a\left(b+c\right)\)

<=>\(1\ge4a\left(b+c\right)\) (2)

nhân (1) với (2) ta đc

\(\left(b+c\right)^2\ge16abc.\left(b+c\right)\)

<=>\(b+c\ge16abc\) (đpcm)

bach nhac lam
30 tháng 6 2019 lúc 21:40

\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)

\(\Rightarrow b+c\ge4a\left(b+c\right)^2\ge4a\cdot4bc=16abc\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\\a+b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{matrix}\right.\)

Đỗ Minh Quang
Xem chi tiết
Vũ Đoàn
3 tháng 11 2017 lúc 21:25

\(\left(b+c\right)\left(a+b+c\right)^2=\left(b+c\right)\left(a+\left(b+c\right)\right)^2\ge2\sqrt{bc}.4a\left(b+c\right)\)

\(\ge8\sqrt{bc}.a.2\sqrt{bc}\ge16abc\)

Dấu "=" xảy ra bạn tự kiếm nhé

©ⓢ丶κεη春╰‿╯
21 tháng 1 2018 lúc 8:41

u trả lời hay nhất:  ta có (b+c)^2/4>=bc =>16abc=<16a(b+c)^2/4=4a(b+c) =4a (1-a)^2 =4a (1-a)(1-a) =(4a-4a^2)(1-a) 
=(1-a) (1- (2a-1)^2) 
Vì (2a-1)^2 >= 0 nên 1- (2a-1)^2 =< 1 suy ra (1-a) (1- (2a-1)^2) =<b+c 
Vậy 16abc=< b+c

p/s :kham khảo

©ⓢ丶κεη春╰‿╯
21 tháng 1 2018 lúc 8:42

Bạn tham khảo thêm cách này nha 

Ta có: b + c = (b + c).(a + b + c)^2 (vì a + b + c = 1) 
Ta có [ (a + b) + c ]^2 >= 4(a + b)c (vì (x + y)^2 >= 4xy ) 
<=> (b + c).(a + b + c)^2 >= 4(a + b)^2.c 
lại có (a + b)^2 >= 4ab => 4(a + b)^2.c >= 16abc (đpcm) 
bạn tự tìm dấu '=' nha

p/s : kham khảo

Lê Thuy Linh
Xem chi tiết
Kudo Shinichi
31 tháng 12 2019 lúc 16:37

Áp dụng BĐT Cauchy cho 2 só dương ta có :
\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(a+c\ge2\sqrt{ac}\)

\(b+c\ge2\sqrt{bc}\)

Nhân vế theo vế các BĐT cùng chiều trên ta được :

\(\left(a+1\right)\left(b+1\right)\left(a+c\right)\left(b+c\right)\ge16\sqrt{a^2b^2c^2}=16abc\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=a\end{cases}}\)

                                     b =c

\(\Leftrightarrow a=b=c=1\)

     Vậy \(\left(a+1\right)\left(b+1\right)\left(a+c\right)\left(b+c\right)\ge16abc\) với a,b,c dương 

Dấu " = " xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Hày Cưi
Xem chi tiết
X Buồn X
Xem chi tiết
Aki Tsuki
23 tháng 5 2018 lúc 22:36

:"here

Van Sang
Xem chi tiết
Lâm Tố Như
Xem chi tiết
Lightning Farron
9 tháng 6 2017 lúc 22:38

bài 2 a+b+c thỏa cái gì thế

Nguyễn Thị Kiều
9 tháng 6 2017 lúc 22:41

Bài này mới gặp ở đâu thì phải. Ghi đề thiếu như nhau :V