Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huy Trường Lưu
Xem chi tiết
Hà Quang Minh
1 tháng 8 2023 lúc 20:29

\(A=3^{100}-3^{99}+3^{98}-...-3+1\\ \Rightarrow\dfrac{1}{3}A=3^{99}-3^{98}+3^{97}-...-1+\dfrac{1}{3}\\ \Rightarrow\dfrac{4}{3}A=3^{100}+\dfrac{1}{3}\\ \Rightarrow A=\dfrac{3^{101}}{4}+\dfrac{1}{4}\)

Xem chi tiết
qlamm
13 tháng 12 2021 lúc 23:05

Tham khảo

Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)

3A = 3+32+33+...+3100+31013+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−13101−1

⇒⇒ A = 3101−123101−12

Vậy A = 3101−12

Xem chi tiết
nguyễn thế hùng
15 tháng 12 2021 lúc 13:32

 

A=3 mũ 101-1 phân số2

 

 

 

 

 

Lưu Võ Tâm Như
16 tháng 12 2021 lúc 14:07

\(A=1-3+3^2-3^3+3^4-...-3^{98}-3^{99}+3^{100}\\ 3A=3-3^2+3^3-3^4-...-3^{98}+3^{99}-3^{100}+3^{101}\\ 3A-A=3^{101}-1\\ \Rightarrow A=\dfrac{3^{101}-1}{2}\)

Phan Lâm Thanh Trúc
Xem chi tiết
Nguyễn Thị Thương Hoài
26 tháng 12 2023 lúc 22:59

Phan Lâm Thanh Trúc
Xem chi tiết
Nguyễn Thị Thương Hoài
26 tháng 12 2023 lúc 22:57

       A =  1 - 3 +  32 -   33 + 34 - ... + 398 - 399 + 3100

      3A =  3 - 32 + 33 - 34+ 3 - ... + 399 - 3100 + 3101

3A + A = 3 - 32+ 33-34+35 -...+399 - 3100 + 3101 + 1 - 3 +...-399+3100

4A   =    3101 + 1

  A    = \(\dfrac{3^{101}+1}{4}\) 

 

nguyenquocthanh
Xem chi tiết
PHẠM THỦY TIÊN
27 tháng 9 2021 lúc 19:02

Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12

Mà đoạn 2A sai nhé bạn, sửa lại:

2A = 3101−13101−1 2A=-10001

A=-10001/2

A=-5000,5

Vậy A=-5000,5

Khách vãng lai đã xóa
Nguyễn Minh Dương
Xem chi tiết

  a,

S  =     1 -  3 + 32 - 33+...+398 - 399

S  =   30 - 31 + 32 - 33+...+ 398 - 399

xét dãy số: 0; 1; 2; 3;...;99 

Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1

Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)

100 : 4 = 25

Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì: 

S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)

S = - 20+...+ 396.(1 - 3 + 32 - 33)

S = - 20 +...+ 396.(-20)

S = -20.( 30 + ...+ 396) (đpcm)

b,

  S           = 1 - 3 + 32 - 33+...+ 398 - 399

3S          =      3  - 32 + 33-...-398  + 399 - 3100

3S + S   =    - 3100 + 1

4S        = - 3100 + 1 

 S        = ( -3100 + 1): 4

S        = - ( 3100 - 1) : 4

Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)

 

Thị Thu Mai Phạm
17 tháng 12 2024 lúc 22:08

nhớ ngắn gọn nha

Thị Thu Mai Phạm
17 tháng 12 2024 lúc 22:08

đừng làm dài

Ngọc Hân Cao Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2023 lúc 20:21

a: \(A=3^{100}-3^{99}+3^{98}-...+3^2-3\)

=>\(3A=3^{101}-3^{100}+3^{99}-...+3^3-3^2\)

=>\(4A=3^{101}-3\)

=>\(A=\dfrac{3^{101}-3}{4}\)

b: \(B=\left(-2\right)^0+\left(-2\right)^1+...+\left(-2\right)^{2024}\)

=>\(B\cdot\left(-2\right)=\left(-2\right)^1+\left(-2\right)^2+...+\left(-2\right)^{2025}\)

=>\(-2B-B=\left(-2\right)^1+\left(-2\right)^2+...+\left(-2\right)^{2025}-\left(-2\right)^0-\left(-2\right)^1-...-\left(-2\right)^{2024}\)

=>\(-3B=-2^{2025}-1\)

=>\(B=\dfrac{2^{2025}+1}{3}\)

c: \(C=\left(-\dfrac{1}{5}\right)^0+\left(-\dfrac{1}{5}\right)^1+...+\left(-\dfrac{1}{5}\right)^{2023}\)

=>\(\left(-\dfrac{1}{5}\right)\cdot C=\left(-\dfrac{1}{5}\right)^1+\left(-\dfrac{1}{5}\right)^2+...+\left(-\dfrac{1}{5}\right)^{2024}\)

=>\(\left(-\dfrac{6}{5}\right)\cdot C=\left(-\dfrac{1}{5}\right)^{2024}-\left(-\dfrac{1}{5}\right)^0\)

=>\(C\cdot\dfrac{-6}{5}=\dfrac{1}{5^{2024}}-1=\dfrac{1-5^{2024}}{5^{2024}}\)

=>\(C\cdot\dfrac{6}{5}=\dfrac{5^{2024}-1}{5^{2024}}\)

=>\(C=\dfrac{5^{2024}-1}{5^{2024}}:\dfrac{6}{5}=\dfrac{5^{2024}-1}{6\cdot5^{2023}}\)

Xem chi tiết

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

nguyentranvietanh
13 tháng 6 2019 lúc 15:34

em den lam

Lý Thị Hoài Thương
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2022 lúc 20:51

a:\(A=3^9\cdot3^8\cdot\left(-3^5\right)=-3^{22}\)

b: \(B=5^3+3^5=125+243=368\)

c: \(3C=3^{101}-3^{100}+3^{99}-...-3^2+3\)

\(\Leftrightarrow4C=3^{101}+1\)

hay \(C=\dfrac{3^{101}+1}{4}\)