Tìm tất cả bộ ba số nguyên dương (a,b,c) sao cho (a+b+c)^2-2a+2b là số chính phương
Cho a,b là 2 số nguyên dương. C/m rằng: a^2+2b và b^2+2a không cùng là 2 số chính phương.
Tìm tất cả các số nguyên dương a , b sao cho a^2b^2 - 4 ( a + b ) là bình phương của 1 số nguyên
Bài 2 :
a, Cho các số a,b,c,d là các số nguyên dương đôi 1 khác nhau và thỏa mãn :
\(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\) . Chứng minh \(A=abcd\) là số chính phương
b, Tìm nguyên a để \(a^3-2a^2+7a-7\) chia hết cho \(a^2+3\)
a) Tìm tất cả n c Z sao cho n2 + 2002 là một số chính phương.
b) Tìm các số nguyên dương n sao cho x = 2n + 2003 và y = 3n + 2005 là các số chính phương
a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.
\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)
\(\Rightarrow a^2-n^2=2002\)
\(\Rightarrow a^2+an-an-n^2=2002\)
\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)
\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)
Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)
Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)
\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\): \(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)
Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)
mà 2002 không chia hết cho 4
\(\Rightarrow\)Mâu thuẫn
\(\Rightarrow\)Điều giả sử là sai
\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài
Tìm tất cả các cặp số nguyên dương (a;b) sao cho \(\frac{a^2\left(b-2a\right)}{b+2a}\)là bình phương của một số nguyên tố
1) Tìm các số nguyên dương x,y tm pt \(xy^2+2xy+x=32y\)
2) cho 2 STN a,b tm \(2a^2+a=3b^2+b\). CMR \(2a+2b+1\) là số chính phương
a.
\(\Leftrightarrow x\left(y+1\right)^2=32y\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)
Do y và y+1 nguyên tố cùng nhau \(\Rightarrow32⋮\left(y+1\right)^2\)
\(\Rightarrow\left(y+1\right)^2=\left\{4;16\right\}\)
\(\Rightarrow...\)
b.
\(2a^2+a=3b^2+b\Leftrightarrow2\left(a-b\right)\left(a+b\right)+a-b=b^2\)
\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)
Gọi \(d=ƯC\left(2a+2b+1;a-b\right)\)
\(\Rightarrow b^2\) chia hết \(d^2\Rightarrow b⋮d\) (1)
Lại có:
\(\left(2a+2b+1\right)-2\left(a-b\right)⋮d\)
\(\Rightarrow4b+1⋮d\) (2)
(1);(2) \(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow2a+2b+1\) và \(a-b\) nguyên tố cùng nhau
Mà tích của chúng là 1 SCP nên cả 2 số đều phải là SCP (đpcm)
Câu hỏi của tran gia nhat tien - Toán lớp 8 - Học trực tuyến OLM
tìm tất cả các số nguyên tố p và 2 số nguyên dương a,b sao cho \(p^a+p^b\) là số chính phương
Giúp tui với =(((( : Tìm tất cả bộ ba số nguyên dương a,b,c sao cho \(2^a+5^b=7^c\)
THANKS WITH LUV!