Tìm số tự nhiên n, sao cho:
a, 7^n+1+7^n+2 = 17150
Tìm số tự nhiên n sao cho:
a) 7 ⋮ n
b) 7 ⋮ (n - l)
c) ( 2n +6) ⋮ ( 2n - 1)
d) (3n + 7) ⋮ ( n - 2)
a: \(n\in\left\{1;7\right\}\)
b: \(n-1\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{0;2;8\right\}\)
c: \(2n-1\in\left\{-1;1;7\right\}\)
\(\Leftrightarrow2n\in\left\{0;2;8\right\}\)
hay \(n\in\left\{0;1;4\right\}\)
1.Tìm số tự nhiên a nhỏ nhất sao cho:a chia 5 dư 3,a chia 7 dư 4
2.Tìm số tự nhiên a và b biết:a-b=5 và (a,b)/[a,b]=1/6
3.Tìm số tự nhiên n lớn nhất có 3 chữ số, sao cho chia 3,4,5,6,7 ta đc các số dư theo thứ tự là 1,2,3,4,5
Tìm số tự nhiên n sao cho:
a) 4n - 5: 2n -1
b) n2 + 3n +1: n +1.
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2\right\}\)
Tìm số tự nhiên n sao cho:
a) 4n - 5: 2n -1
b) n2 + 3n +1: n +1.
a: \(\Leftrightarrow2n-1\in\left\{-1;1;3\right\}\)
hay \(n\in\left\{0;1;2\right\}\)
\(a,\Leftrightarrow2\left(2n-1\right)-3⋮\left(2n-1\right)\\ \Leftrightarrow2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow2n\in\left\{0;2;4\right\}\left(n\in N\right)\\ \Leftrightarrow n\in\left\{0;1;2\right\}\\ b,\Leftrightarrow n^2+n+2n+2-1⋮n+1\\ \Leftrightarrow n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\\ \Leftrightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Leftrightarrow n=0\left(n\in N\right)\)
Tìm tất cả các số tự nhiên n sao cho:
a) n + 6 ⋮ n + 1
b) 4n + 9 ⋮ 2n + 1
a) \(\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;4\right\}\)
b) \(\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)
\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;3\right\}\)
Để n + 6 ⋮ n + 1 thì :
⇒ n + 1 + 5 ⋮ n + 1 mà n + 1 ⋮ n + 1
Như thế 5 ⋮ n + 1 và n + 1 ∈ Ư(5)
⇒ Ư(5)={ 1;5 }
n + 1 = 1 ⇒ n = 0
n + 1 = 5 ⇒ n = 4
Vậy .............
⋮⋮⋮tìm số tự nhiên n sao cho:
a) n+6 chia hết cho n+2
b) n+3 chia hết cho n-1
\(a,\Rightarrow n+2+4⋮n+2\\ \Rightarrow n+2\inƯ\left(4\right)=\left\{1;2;4\right\}\\ \Rightarrow n\in\left\{0;2\right\}\\ b,\Rightarrow n-1+4⋮n-1\\ \Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\\ \Rightarrow n\in\left\{2;3;5\right\}\)
Câu trả lời của mk đây nha bạn Lê Ngọc Anh Thư
Tìm số tự nhiên n sao cho:
a,n+6 chia hết cho n+2
n+2 ∈ Ư(4)={1;2;4}
n+2 ∈ {0;2}
b,n-1+4⋮n-1
n-1 ∈ Ư(4)={1;2;4}
n ∈ {2;3;5}
(Chúc bạn học tốt nha)^^
Tìm tất cả các số tự nhiên sao cho:
a. 8 ⋮ n+1 b. 10n + 14 ⋮ 2n +2
a, Ta có : 8 ⋮ n + 1
=> n + 1∈ Ư(8) ∈ {1;2;4;8} ( Vì đề bạn là số tự nhiên nha)
=> n ∈ {0;1;3;7}
b, 10n + 14 ⋮ 2n + 2
=> (10n + 10) + 4 ⋮ 2n + 2
=> 5(2n + 2) + 4 ⋮ 2n + 2
Vì 5(2n + 2) ⋮ 2n + 2 nên 4 ⋮ 2n + 2
=> 2n + 2 ∈ Ư(4) ∈ {1;2;4)
=> 2(n + 1) ∈ {1;2;4}
Mà 2(n + 1) luôn chẵn => 2(n + 1) = 2;4
=> n = 0;1
Giúp mình với ạ. Mình đang cần gấp!!!
tìm số tự nhiên n sao cho:
a) n + 3 chia hết cho n - 1
b) 4n + 3 chia hết cho 2n + 1
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5
Ta có: 2n+1 chia hết cho 2n+1
nên 2.(2n+1) chia hết cho 2n+1
suy ra 4n+1 chia hết cho 2n+1
Ta có hiệu sau:
[(4n+3)-(4n+1)] chia hết cho 2n+1
(4n+3-4n-1) chia hết cho 2n+1
2 chia hết cho 2n+1
suy ra 2n+1 thuộc Ư(2)
Ư(2)={1;2}
suy ra 2n+1∈{1;2}
Ta có bảng sau:
2n+1 1 2
2n 0 1
n 0 1/2
Vậy n=0
a) để n+3⋮n-1
thì n-1+4⋮n-1
⇒4⋮n-1
⇒n-1∈Ư(4)={1;2;4}
\(\Rightarrow\left[{}\begin{matrix}n-1=1\\n-1=2\\n-1=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=2\\n=3\\n=5\end{matrix}\right.\)
vậy n∈{2;3;5}
b)để 4n+3⋮2n+1
thì 2.2n+1+2⋮2n+1
⇒2⋮2n+1
⇒2n+1∈Ư(2)={1;2}
\(\Rightarrow\left[{}\begin{matrix}2n+1=1\\2n+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n=0\\2n=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=0\\n=\dfrac{1}{2}\end{matrix}\right.\)
vì n là số tự nhiên
⇒n=0
vậy n=0
(tick cho mk nha)
Bài 10: Tìm các số nguyên \(x\) biết:
a) \(2x-3\) là bội của \(x+1\)
b) \(x-2\) là ước của \(3x-2\)
Bài 14: Tìm số tự nhiên \(n\) sao cho:
a) \(4n-5\) ⋮ \(2n-1\)
b) \(n^2+3n+1\) ⋮ \(n+1\)
Bài 16: Tìm cặp số tự nhiên \(x\),\(y\) biết:
a) \(\left(x+5\right)\left(y-3\right)=15\)
b) \(\left(2x-1\right)\left(y+2\right)=24\)
c) \(xy+2x+3y=0\)
d) \(xy+x+y=30\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
Bài 16:
a: \(\left(x+5\right)\left(y-3\right)=15\)
=>\(\left(x+5\right)\left(y-3\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>\(\left(x+5;y-3\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-4;18\right);\left(10;4\right);\left(-6;-12\right);\left(-20;2\right);\left(-2;8\right);\left(0;6\right);\left(-8;-2\right);\left(-10;0\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(10;4\right);\left(0;6\right)\right\}\)
b: x là số tự nhiên
=>2x-1 lẻ và 2x-1>=-1
\(\left(2x-1\right)\left(y+2\right)=24\)
mà 2x-1>=-1 và 2x-1 lẻ
nên \(\left(2x-1\right)\cdot\left(y+2\right)=\left(-1\right)\cdot\left(-24\right)=1\cdot24=3\cdot8\)
=>\(\left(2x-1;y+2\right)\in\left\{\left(-1;-24\right);\left(1;24\right);\left(3;8\right)\right\}\)
=>\(\left(2x;y\right)\in\left\{\left(0;-26\right);\left(2;22\right);\left(4;6\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;-26\right);\left(1;11\right);\left(2;6\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(1;11\right);\left(2;6\right)\right\}\)
c:
x,y là các số tự nhiên
=>x+3>=3 và y+2>=2
xy+2x+3y=0
=>\(xy+2x+3y+6=6\)
=>\(x\left(y+2\right)+3\left(y+2\right)=6\)
=>\(\left(x+3\right)\left(y+2\right)=6\)
mà x+3>=3 và y+2>=2
nên \(\left(x+3\right)\cdot\left(y+2\right)=3\cdot2\)
=>x=0 và y=0
d: xy+x+y=30
=>\(xy+x+y+1=31\)
=>\(x\left(y+1\right)+\left(y+1\right)=31\)
=>\(\left(x+1\right)\left(y+1\right)=31\)
\(\Leftrightarrow\left(x+1\right)\cdot\left(y+1\right)=1\cdot31=31\cdot1=\left(-1\right)\cdot\left(-31\right)=\left(-31\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y+1\right)\in\left\{\left(1;31\right);\left(31;1\right);\left(-1;-31\right);\left(-31;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right);\left(-2;-32\right);\left(-32;-2\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right)\right\}\)