Cho a,b,c là độ dài của ba cạnh tam giác.
CMR: ab + bc + ca\(\le a^2+b^2+c^2\)< 2.(ab + bc + ca).
Cho a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh rằng:
\(ab+bc+ca\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì
a, Cho a,b,c là độ dài ba cạnh của một tam giác. CMR,
\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b, Tìm tất cả các cặp số nguyên (x;y) thỏa mãn:
\(10x^2+50y^2+42xy
+14x-6y+57< 0\)
Cho A,B,C là độ dài 3 cạnh của một tam giác.CMR :
AB+AC+BC\(\le A^2+B^2+C^2\) <2(AB+BC+CA)
<
Cho a,b,c là độ dài 3 cạnh của một tam giác.Chứng minh:\(ab+bc+ca\le a^2+b^2+c^2<2\left(ab+bc+ca\right)\)
Ta có :
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) (1)
Vì \(a,b,c\)là độ dài 3 cạnh của một tam giác nên ta có :
\(a^2< a.\left(b+c\right)\)
\(\Rightarrow a^2< ab+ac\)
Tương tự :
\(b^2< ab+bc\)
\(c^2< ca+bc\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\) (2)
Từ (1) và (2)
=> Đpcm
Cho a, b, c là độ dài ba cạnh của tam giác.
CMR: \(ab+bc+ca\le a^2+b^2+c^2\)
bằng nhau trong trường hợp tam giác đều bạn tự làm nha còn bé hơn thì trước tiên viết 3 bất đẳng thức của tam giác sau đó cho 1 giả sử để chứng minh hoặc là biến đổi bất đẳng thức của tam giác giờ mình lười làm lắm hướng dẫn như vậy thôi
Từ đề => a,b,c \(\ge\)0 . Ta lại có :\(ab+ac+bc\le a^2+b^2+c^2\)
=> \(3\left(ab+ac+bc\right)\le\left(a+b+c\right)^2\) luôn đúng với mọi a,b,c \(\ge\) 0
=> dpcm
Dấu "=" xảy ra khi a=b=c hay khi tam giác ABC đều
à bỏ cái = 0 đi nhé :v cạnh tam giác luôn lớn hơn 0 rồi
Cho a,b ,c là độ dài ba cạnh của tam giác . Chứng minh rằng :
\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Ta có:
\(\left(a+b\right)^2\ge0\)
\(\Rightarrow a^2+2ab+b^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\) (1).
\(\left(b+c\right)^2\ge0\)
\(\Rightarrow b^2+2bc+c^2\ge0\)
\(\Rightarrow b^2+c^2\ge2bc\) (2).
\(\left(c+a\right)^2\ge0\)
\(\Rightarrow c^2+2ca+a^2\ge0\)
\(\Rightarrow c^2+a^2\ge2ac\) (3).
Cộng theo vế (1), (2) và (3) ta được:
\(a^2+b^2+b^2+c^2+a^2+c^2\ge2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2\ge2.\left(ab+bc+ca\right)\)
\(\Rightarrow2.\left(a^2+b^2+c^2\right)\ge2.\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\) (*).
Vì a, b, c là độ dài ba cạnh của tam giác (gt).
\(\left\{{}\begin{matrix}a+b>c\\b+c>a\\c+a>b\end{matrix}\right.\) (theo bất đẳng thức trong tam giác).
=> \(\left\{{}\begin{matrix}ac+bc>c^2\left(4\right)\\ab+ac>a^2\left(5\right)\\bc+ab>b^2\left(6\right)\end{matrix}\right.\)
Cộng theo vế (4), (5) và (6) ta được:
\(ac+bc+ab+ac+bc+ab>a^2+b^2+c^2\)
\(\Rightarrow2ab+2bc+2ac>a^2+b^2+c^2\)
\(\Rightarrow2.\left(ab+bc+ca\right)>a^2+b^2+c^2\) (**).
Từ (*) và (**) => \(ab+bc+ca\le a^2+b^2+c^2< 2.\left(ab+bc+ca\right)\left(đpcm\right).\)
Chúc bạn học tốt!
Theo BĐTBĐT tam giác ta có:
a<b+c
=>a2<ab+ac
b<c+a
=>b2<bc+ba
c<a+b
=>c2<ca+cb
Cộng vế với vế 3 BĐT trên ta được:
a2+b2+c2<2(ab+bc+ca)(1)
Ta có (a−b)2+(b−c)2+(c−a)2≥0 với mọi a,b,c là độ dài 3 cạnh của tam giác
<=>a2−2ab+b2+b2−2bc+c2+c2−2ca+a2≥0
<=>2(a2+b2+c2)≥2(ab+bc+ca)
<=>ab+bc+ca≤a2+b2+c2(2)
Dấu = xảy ra khi a=b=c<=> tam giác đó đều
(1),(2)=>đpcm
Cho a , b , c là ba cạnh của một tam giác . Chứng minh rằng : \(ab+bc+ca\le a^2+b^2+c^2<2\left(ab+bc+ca\right)\).
Cho a, b,c là độ dài 3 cạnh tam giác
CM \(ab+bc+ac\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Mk còn thiếu vế trái nữa
a2 + b2 + c2 \(\le\)2 ( ab + bc + ca )
Vì a ; b ; c là 3 cạnh của 1 tam giác nên theo bất đẳng thức tam giác:
Ta có:
a\(\le\)b +c => a . a \(\le\)a.(b + c) => a2 \(\le\) ab + ac ( 1 )
b \(\le\) a + c => b . b \(\le\)b ( a + c ) => b2 \(\le\)ab + bc ( 2)
c \(\le\) a + b => c . c \(\le\) c . ( a + b ) => c2 \(\le\) ac + bc ( 3 )
Cộng với các vế ( 1 ) ; ( 2 ) ; ( 3 ) được:
a2+ b2 + c2 \(\le\) ab + ac + ab + bc + ac + bc
Vậy a2 + b2 + c2 \(\le\)2.( ab + bc + ca )
a2 + b2 + c2 \(\ge\) ab + bc + ca
<=> a2 + b2 + c2 - ab - bc - ca \(\ge\) 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca \(\ge\)0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) \(\ge\)0
<=> ( a - b )2 + ( b - c)2 + ( c - a)2 \(\ge\) 0 ( Luôn đúng)
Dấu " = " xảy ra khi a = b = c
Cho a,b,c là số đo 3 cạnh của 1 tam giác.CMR:
\(ab+ac+bc\le a^2+b^2+c^2=2\left(ab+ac+bc\right)\)