cm a5 -a chia hết cho 30 với a thuộc Z
Chứng minh: a5-a chia hết 30 với a ϵ Z
A=a^5-a=a(a^4-1)
=a(a-1)(a+1)(a^2+1)
Vì a;a-1;a+1 là 3 số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>A chia hết cho 6
Vì 5 là số nguyên tố
nên a^5-a chia hết cho 5
=>A chia hết cho 30
Cho a,b thuộc Z Cm: ab(a^4-b^4) chia hết cho 30
cm với n thuộc Z
a) n^5- n chia het 30
b)n^2+4n+3 chia hết cho 8 với n lẻ
Tìm mọi a thuộc Z sao cho
a) a-a5 chia hết cho a+2
b) a+4 chia hết cho a-5
c) a+3 chia hết cho a-1
d) a^2.7 chia hết cho a+3
Giúp mk nha mn ♥♥
Thanks♥♥♥
CM nếu a+b chia hết cho 6 thì a^3+b^3 chia hết cho 6 với a,b thuộc z
Nếu a + b chia hết cho 6 => a chia hết cho 6 và b chia hết cho 6
=> a^3 hay aaa chia hết cho 6
b^3 hay bbb chia hết cho 6
=> a^3 + b^3 chia hết cho 6.
1. cho n thuộc z
c/m a=n^4-n^2 chia hết cho 12
2.cho n thuộc z
c/m a= n^2(n^4-1) chia hết cho 60
3.cho n thuộc z
c/m a=2n(16-n^4) chia hết cho 30
4.cho a,b thuộc z
c/m M=ab(a^4-b^4) chia hết cho 30
CM:
a) (2n+3)2-9 chia hết cho 4 với n thuộc Z
b) n2(n+1)+2n(n+1) chia hết cho 6 với n thuộc Z.
c) n(2n-3)-2n(n+1) chia hết cho 5 với n thuộc Z.
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
b) \(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì \(n\in Z\Rightarrow\left\{{}\begin{matrix}x+1\in Z\\n+2\in Z\end{matrix}\right.\)
Mà n,n+1,n+2 là 3 sô nguyên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+3\right)⋮6\left(dpcm\right)\)
CMR:A=a^5-a chia hết cho 30 với a thuộc z
a5-a = a . ( a4 -1 ) = a(a-1)(a+1)(a2+1)
a(a-1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2
(a-1)a(a+1) là tích ba số tự nhiên liên tiếp nên chia hết cho 3
mà (2,3)=1 ⇒ a(a-1)(a+1)(a2+1) ⋮ (2.3) = 6
*Nếu a = 5q (q ∈ N) =>a(a-1)(a+1)(a2+1) ⋮ 5
Nếu a = 5q + 1 => a - 1 = 5q
Nếu a = 5q + 2 => a2 + 1= (5q+2)2+1=25q2 +5
Nếu a = 5q+3 => a2 + 1= (5q+3)2+1=25q2 +10
Nếu a = 5q+4 => a +1 = 5q +5
Vậy a5 -5 chia hết cho30 với a thuộc Z
C/M
A=3a^4-14a^3+21a^2-10a chia hết 24 với mọi a thuộc z
B=a^5+59a chia hết 30 với a thuộc z
C=a^3b-ab^3 chia hết 6 với a,b thuộc z
D=n^4-4n^3-4n^2+16n chia hết 384 với n chănx