Cho \(\frac{1}{\sqrt{9-6x+x^2}}-\sqrt{x-3}\)
Tìm x khi y =0
y=\(\frac{1}{\sqrt{9-6x+x^2}}\) -\(\sqrt{x-3}\)
tìm x khi y=0
\(\Leftrightarrow\frac{1}{\sqrt{\left(x-3\right)^2}}-\sqrt{x-3}=0\)
\(\Leftrightarrow\frac{1}{x-3}-\sqrt{x-3}=0\)
Em không chắc đâu ạ!
ĐKXĐ: \(\hept{\begin{cases}x\ne3\\x\ge3\end{cases}}\Rightarrow x>3\)
\(y=\frac{1}{\sqrt{x^2-6x+9}}-\sqrt{x-3}=\frac{1}{\sqrt{\left(x-3\right)^2}}-\sqrt{x-3}\)
Do x > 3 nên x - 3 > 0. Do vậy:\(y=\frac{1}{x-3}-\sqrt{x-3}\)
Đặt \(\sqrt{x-3}=t>0\Rightarrow y=\frac{1}{t^2}-t\)
Theo đề bài suy ra \(y=\frac{1}{t^2}-t=0\Leftrightarrow t=\frac{1}{t^2}\Leftrightarrow t^3=1\Leftrightarrow\orbr{\begin{cases}t=1\\t=-1\left(L\right)\end{cases}}\)
t = 1 \(\Rightarrow\sqrt{x-3}=1\Rightarrow x=4\) (TMĐKXĐ)
1) Giải PT : (x2 - 6x - 7)2 - 9(x2 - 4x - 3)2 = 0
2) Cho x, y thỏa mãn PT \(\sqrt{x+y-\frac{2}{3}}=\sqrt{x}+\sqrt{y}-\sqrt{\frac{2}{3}}\). Tính x.y
Bài 1:
\(\Leftrightarrow\left(x^2-6x-7\right)^2-\left(3x^2-12x-9\right)^2=0\)
\(\Leftrightarrow\left(3x^2-12x-9-x^2+6x+7\right)\left(3x^2-12x-9+x^2-6x-7\right)=0\)
\(\Leftrightarrow\left(2x^2-6x-2\right)\left(4x^2-18x-16\right)=0\)
\(\Leftrightarrow\left(x^2-3x-1\right)\left(2x^2-9x-8\right)=0\)
hay \(x\in\left\{\dfrac{3+\sqrt{13}}{2};\dfrac{3-\sqrt{13}}{2};\dfrac{9+\sqrt{145}}{4};\dfrac{9-\sqrt{145}}{4}\right\}\)
cho x,y,z>0 và x+y+z=3 Tìm Min của : \(P=\frac{x+y}{\sqrt{x^2+y^2+6z}}+\frac{y+z}{\sqrt{y^2+z^2+6x}}+\frac{z+x}{\sqrt{z^2+x^2+6y}}\)
SEIFWJNHGRHFQ24FTW
Cho biểu thức:\(\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}-\sqrt{y}}+\frac{3\sqrt{x}}{y-x}\)
a) Rút gọn
b) Tính A khi x=4, y=9
c) C/m : A<0 với x>y>0
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\x\ne y\end{matrix}\right.\)
Gọi biểu thức trên là A , ta có:
\(A=\frac{2\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}+\frac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}-\frac{3\sqrt{x}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\\ =\frac{2\sqrt{x}-2\sqrt{y}+\sqrt{x}+\sqrt{y}-3\sqrt{x}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\\ =\frac{-\sqrt{y}}{x-y}\left(=\frac{\sqrt{y}}{y-x}\right)\)
b) Với x=4 ; y=9 ta có:
\(A=\frac{\sqrt{9}}{9-4}=\frac{3}{5}\)
c) Ta có: với x>y>0 thì A<=>\(\left\{{}\begin{matrix}\sqrt{y}>0\\x>y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y}>0\\y-x< 0\end{matrix}\right.\Leftrightarrow A< 0\)
Vậy A<0 với mọi x>y>0
tìm x để biểu thức có nghĩa
\(A=\frac{x+1}{\sqrt{x-2}}\)
\(B=\sqrt{9-x^2}+\frac{1}{x-2}\)
\(C=\sqrt{-6x^2}+\sqrt{1-x^2}\)
\(D=\frac{\sqrt{x-1}+\sqrt{x-2}}{\sqrt{x^2}-4\left(x-1\right)}\)
\(E=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x+3}}\)
\(F=\sqrt{x^2-6x+9}+\sqrt{x-2\sqrt{x-1}}\)
a) Giải Phương trình: \(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
b) Giải Phương Trình: \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
Giúp mình nha.......
a) ĐK: \(x>2009;y>2010;z>2011\)
\(\Leftrightarrow\frac{\sqrt{x-2009}-1}{x-2009}-\frac{1}{4}+\frac{\sqrt{y-2010}-1}{y-2010}-\frac{1}{4}+\frac{\sqrt{z-2011}-1}{z-2011}-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{-\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{-\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{-\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\left(1\right)\)
Dễ thấy với đkxđ thì \(VT\left(1\right)\le0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}\left(tm\right)}}\)
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)(*)
\(ĐK:\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)
(*)\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)
Xét phương trình\(\sqrt{x+3}+\sqrt{x-3}=0\)(**) có \(\sqrt{x+3}\ge0;\sqrt{x-3}\ge0\)nên (**) xảy ra khi \(\hept{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\left(L\right)\)
Vậy phương trình có một nghiệm duy nhất là 3
a. ĐK : x > 2009 ; y > 2010 ; z > 2011
Pt <=> \(\frac{1-\sqrt{x-2009}}{x-2009}+\frac{1-\sqrt{y-2010}}{y-2010}+\frac{1-\sqrt{z-2011}}{z-2011}=-\frac{3}{4}\)
\(\Leftrightarrow\left(\frac{1}{x-2009}-\frac{1}{\sqrt{x-2009}}+\frac{1}{4}\right)+\left(\frac{1}{y-2010}-\frac{1}{\sqrt{y-2010}}+\frac{1}{4}\right)\)
\(\left(\frac{1}{z-2011}-\frac{1}{\sqrt{z-2011}}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}\right)^2=0\\\left(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}\right)^2=0\\\left(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-2009}}=\frac{1}{2}\\\frac{1}{\sqrt{y-2010}}=\frac{1}{2}\\\frac{1}{\sqrt{z-2011}}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}}\)( tmđk )
b. ĐK : x2 - 9 \(\ge\)0 <=> x2\(\ge\)9 <=> - 3\(\le\)x\(\le\)3
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}=0\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\left(tmdk\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)
TH :\(\sqrt{x+3}+\sqrt{x-3}=0\)
Vì \(\sqrt{x+3}+\sqrt{x-3}\ge0\forall x\). Dấu "=" xảy ra <=> \(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)( mâu thuẫn )
Vậy pt có nghiệm duy nhất là x = 3
1/ cho x,y>0.CM
\(\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{1}{4}\)
2/ giải pt \(x^2-6x+4+2\sqrt{2x-1}=0\)
2/ x2 - 6x + 4 + \(2\sqrt{2x-1}\)= 0
<=> (x2 - 4x + 4) - (2x - 1 - \(2\sqrt{2x-1}\)+1) = 0
<=> (x - 2)2 - (1 - \(\sqrt{2x-1}\))2 = 0
\(\Leftrightarrow\left(x-1-\sqrt{2x-1}\right)\left(x-3+\sqrt{2x-1}\right)=0\)
Làm tiếp nhé
Câu 1/
\(\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{x\sqrt{y}+y\sqrt{x}}{2\sqrt{xy}}-\frac{x+y}{2}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{x+y}{2}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{\left(x+\frac{1}{4}\right)+\left(y+\frac{1}{4}\right)-\frac{1}{2}}{2}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{\left(x+\frac{1}{4}\right)+\left(y+\frac{1}{4}\right)}{2}+\frac{1}{4}\)
\(\le\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{\sqrt{x}+\sqrt{y}}{2}+\frac{1}{4}=\frac{1}{4}\)
RÚT GỌN BIỂU THỨC
A=\(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)(với a>_ 0, b>_ 0, a#b)
B=\(\left(\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right).\left(\frac{\sqrt{x}+\sqrt{y}}{x-y}\right)\)(với x>_ 0, y>_ 0, x#y)
C=\(x-4-\sqrt{16-8x^2+x^4}\)(với x>4)
D=\(\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}\)(với a>0, b>0, a#b)
E=\(\left(2+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right).\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\)(với a>0, a#1)
F=\(\frac{a-3\sqrt{a}}{\sqrt{a}-3}-\frac{a+4\sqrt{a}+3}{\sqrt{a}+3}\)( với a>_ 9)
G=\(\frac{9-x}{\sqrt{x}+3}-\frac{9-6\sqrt{x}+x}{\sqrt{x}-3}-6\)( với x>_ 9 )
1.giải hệ phương trình
\(5x^2+6x+9=1x^2+2x^2+....+99x^8\)
\(5x^4+9y^3-3z^2+8x+3y=1x^2+2y^2+3z^4+.....+1999x^2\)
\(9y^8+6y^5+7x^3+9\sqrt[15]{x^4}=\sqrt[9]{x}+9\sqrt[10]{z}+......+888\sqrt[55]{x}\)
\(\frac{1}{\sqrt[9]{x}}+\frac{2}{\sqrt[8]{y}}+...+\frac{9}{\sqrt{x}}=\frac{1}{\sqrt[100]{x}-\sqrt[99]{y}-...-\sqrt{z}}\)
\(\sqrt[3]{2x^2}+.....+\sqrt[3]{23z^2}=\sqrt{5x}+\sqrt{7y}+\sqrt{11z}+...+\sqrt{97x}\)
Tìm x,y,z
THÁCH THỨC NGƯỜI THÔNG MINH GIẢI BÀI NÀY