Cho pt x^2 -2(m-2)x -2m =0
a. Cm pt luôn có 2 ngo pb vớj mọj m
b. Tìm giá trị của m để 2 ngo của pt thoả hệ thức x1-x2=x1^2
cho pt x2-2(m+1)x+m-4=0
a, Giải pt khi m= -5
b, CMR pt luôn có nghiệm x1, x2 với mọi m
c, Tìm m để pt có 2 nghiệm trái dấu
d, Tìm m để pt có 2 nghiệm dương
e, CMR biểu thức A=x1(1-x2)+x2(1-x1) không phụ thuộc m
f, Tính giá trị của biểu thức x1-x2
cho PT x2−2(m−1)x−m=0x2−2(m−1)x−m=0
a) tìm hệ thức liên hệ giữa 2 nghiệm không phụ thuộc vào m
b) tìm m để Pt có đúng 1 nghiệm âm
c) tìm m để PT có 2 nghiệm = nhau về giá trị tuyệt đối và trái dấu nhau
d) tìm m để |x1−x2|nhỏnhất
cho pt x2-2(m-1)x-2m+5=0với m là tham số tìm các giá trị của m để pt đã cho có 2 nghiệm phân biệt x1,x2(x1<x2) thoả mãn x1-x2=-2
Δ=(2m-2)^2-4(-2m+5)
=4m^2-8m+4+8m-20=4m^2-16
Để PT có hai nghiệm phân biệt thì 4m^2-16>0
=>m>2 hoặc m<-2
x1-x2=-2
=>(x1-x2)^2=4
=>(x1+x2)^2-4x1x2=4
=>(2m-2)^2-4(-2m+5)=4
=>4m^2-8m+4+8m-20=4
=>4m^2=20
=>m^2=5
=>m=căn 5 hoặc m=-căn 5
Cho pt: x2- (m-5)x + 2m + 6
a) Cm rằng pt đã cho luôn có 2 nghiệm với mọi giá trị của m
b) Tìm m để pt luôn có 2 nghiệm x1, x2 thỏa mãn: x13 + x23 = 35
Cho pt x^2 -(2m+1)+m^2+m-6=0
a.cm pt luon co 2 ngo pb voi moi m
b. Goi x1, x2 la hai ngo cua pt. Tim gia tri cua m de pt co 2 ngo thoa | x1^3 - x2^3 | =50
Cho PT: x^2-2(m+1)x+2m-2=0 (x là ẩn số)a) CMR: PT luôn có 2 nghiệm phân biệt với mọi mb) Gọi 2 nghiệm của PT là x1, x2. Tính theo m giá trị của biểu thức:E=x1^2+2(m+1)x2+2m-2
Giúp mk câu b nha
Lời giải:
a) $\Delta=(m+1)^2-(2m-2)=m^2+3>0$ với mọi $m\in\mathbb{R}$ nên PT luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$
b) Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m-2\end{matrix}\right.\)
Khi đó:
\(E=x_1^2+2(m+1)x_2+2m-2=x_1^2+(x_1+x_2)x_2+x_1x_2=x_1^2+x_2^2+2x_1x_2=(x_1+x_2)^2=4(m+1)^2\)
CHO PT ẨN X: X^2-(2M+3)X +M^2 +3M-10=0 (1)
a cm pt luôn luôn có 2 nghiệm x1,x2 với mọi m
btimf giá trị của m để pt (1) có 2 nghiệm thỏa mãn
1/x1+2x2=-1 2/ -11<x1<x2<20
x^2-2(m-3)x+2m-8=0
chứng minh rằng pt luôn có 2 nghiệm phân biệt với m
b) gọi x1 x2 là 2 nghiệm của pt tìm m để x1^2+x2^2=52
\(x^2-2\left(m-3\right)x+2m-8=0\left(1\right)\)
\(\Delta'=\left(m-3\right)^2-2m+8=m^2-8m+9+8=\left(m-4\right)^2+1>0\forall m\)
⇒ Phương trình hai nghiệm phân biệt
Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=2m-8\end{matrix}\right.\)
Có : \(x_1^2+x_2^2=52\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=52\)
\(\Leftrightarrow4\left(m-3\right)^2-2\left(2m-8\right)=52\)
\(\Leftrightarrow4m^2-24m+36-4m+16=52\)
\(\Leftrightarrow4m^2-28m=0\Leftrightarrow4m\left(m-7\right)=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=7\end{matrix}\right.\)
Vậy...
Cho pt: x2-(2m-3)x+m2-3m=0
a) giải pt với m=1
b) chứng minh pt luôn có nghiệm
c) Định m để pt có 2 nghiệm x1,x2 thoả mãn 1<x1<x2<6
d) Định m để pt có 2 nghiệm x1,x2 sao cho A = x1(x2-1) đạt giá trị nhỏ nhất
PT : \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a ) Làm tổng luôn ta chỉ cần thay m = 1 là xong
b ) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9\)\(>0\forall m\in R\Rightarrowđpcm\)
c ) \(\hept{\begin{cases}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\end{cases}}\) quay lại a ) m=1 \(\Rightarrow\hept{\begin{cases}x_1=-2\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=1\\x_2=-2\end{cases}}\)
\(4< m< 6\)