Tính giá trị của biểu thức M=(3x- 5y)/(2x- y) với x/y=11/3
a) tính giá trị của biểu thức D=4x-5y/3x+4y với x/y=3/4
b)cho hai biểu thức M=3x(x-y) và N=y^2-x^2. biết(x-y) chia hết cho 11.cmr:(M-N) chia hết cho 11
GIÚP MÌNH NHA!
a) ta có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\)
\(D=\frac{4x-5y}{3x+4y}=\frac{3y-5y}{3y+4y-x}=\frac{-2y}{7y-x}=\frac{-2y}{7y-y3:4}\)
\(=\frac{-2y}{\frac{25}{4}y}=-2y:\left(\frac{25}{4}y\right)=-\frac{8}{25}\)
b) ta có: M=3x.(x-y) chia hết cho 11
N = y2 - x2 = y2 - xy - x2 + xy = y.(y-x) - x.(x-y) = (y-x).(y+x) = - (x-y).(y+x) chia hết cho 11
=> M-N chia hết cho 11 (đpcm)
Tính giá trị của biểu thức
M=3x-5y/2x-y với x/y=11/3
Giải:
\(\dfrac{x}{y}=\dfrac{11}{3}\Rightarrow\dfrac{x}{11}=\dfrac{y}{3}\)
Đặt \(\dfrac{x}{11}=\dfrac{y}{3}=k\) \(\Rightarrow x=11k;y=3k\)
Thay \(x=11k;y=3k\) vào \(M\) ta có:
\(M=\dfrac{3x-5y}{2x-y}=\dfrac{3.11k-5.3k}{2.11k-3k}\)
\(=\dfrac{33k-15k}{22k-3k}=\dfrac{\left(33-15\right)k}{\left(22-3\right)k}\)
\(=\dfrac{18k}{19k}=\dfrac{18}{19}\)
Vậy \(M=\dfrac{18}{19}\)
Bài giải
Vì \(\dfrac{x}{y}=\dfrac{11}{3}\Rightarrow\dfrac{x}{11}=\dfrac{y}{3}\)
Đặt \(\dfrac{x}{11}=\dfrac{y}{3}=k\Rightarrow x=11k;y=3k\)
Ta có : M = \(\dfrac{3x-5y}{2x-y}=\dfrac{3.11k-5.3k}{2.11k-3k}=\dfrac{33k-15k}{22k-3k}=\dfrac{\left(33-15\right).k}{\left(22-3\right).k}=\dfrac{18k}{19k}=\dfrac{18}{19}.\)Vậy \(M=\dfrac{18}{19}\)
Cho tỉ lệ thức \(\dfrac{x}{y}=\dfrac{2}{3}\). Tính giá trị của các biểu thức sau:
\(A=\dfrac{x+5y}{3x-2y}-\dfrac{2x-3y}{4x+5y}\)
\(B=\dfrac{2x^2-xy+3y^2}{3x^2+2xy+y^2}\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
Tính giá trị của biểu thức:
M=\(\dfrac{3x-5y}{2x-y}với\dfrac{x}{y}=\dfrac{11}{3}\)
Ta có: \(\dfrac{x}{y}=\dfrac{11}{3}\Rightarrow\dfrac{x}{11}=\dfrac{y}{3}\)
Đặt \(\dfrac{x}{11}=\dfrac{y}{3}=k\Rightarrow\left\{{}\begin{matrix}x=11k\\y=3k\end{matrix}\right.\)
\(M=\dfrac{3x-5y}{2x-y}=\dfrac{33k-15k}{22k-3k}=\dfrac{18k}{19k}=\dfrac{18}{19}\)
Vậy \(M=\dfrac{18}{19}\)
cho x,y>0 thỏa mãn 10x^2 +xy =3y^2
tính giá trị của biểu thức
M= 2x-y/3x-y + 5y-x/3x+y
Cho đa thức M=2x - 3xy² + 1 , a)tính giá trị của M tại x= - 2x - 3xy² +1 b)tính giá trị của M tại x= -2 và y=3 c)Tính (2x - 3y) (3x + 4y);d) (x²y - 5y² + 3xy) (-2xy) MONG MN GIÚP Ạ
a: M=2(-2x-3xy^2+1)-3xy^2+1
=-4x-6xy^2+2-3xy^2+1
=-4x-9xy^2+3
b: Thay x=-2 và y=3 vào M, ta được:
M=2*(-2)-3*(-2)*3^2+1
=-4+1+6*9
=54-3
=51
Tính giá trị của biểu thức sau:
a) \(3x-5y+1\) tại \(x=\dfrac{1}{3}\) ; \(y=-\dfrac{1}{5}\) b) \(3x^2-2x-5\) tại \(x=1\) ; \(x=-1\)
\(a.3x-5y+1=3.\dfrac{1}{3}-5.\left(-\dfrac{1}{5}\right)+1=1+1+1=3\)
b.x=1
\(\Rightarrow3.1^2-2.1-5=-4\)
x=-1
\(\Rightarrow3.\left(-1\right)^2-2.\left(-1\right)-5=3+2-5=0\)
1) tính các biểu thức sau
a) 5x(2x^n-1-y^n)-2x^n-2(5x-y^3)+xy^3(5y^n-3-2x^n-3) (với x thuộc N và x>=3)
b) 3x^n-2(x^n+2-y^n+2)+y^n+2(3x^n-2-y^n-2) (với x thuộc N và n>=2)
2) rút gọn biểu thức rồi tính giá trị
x^10-2006x^9+2006x^8-2006x^7+2006x^6+...-2006x+2006 biết x=2005
3) chứng tỏ rằng biểu thức sau luôn luôn không âm với mọi giá trị của x và y
A=x^2+y^2-(y(3x-2y)-(x(x+2y)-y(y-x)))
Cho 2x-y/y=3/4,tính giá trị của biểu thức :A=3x+4y/5y
đk: \(y\ne0\)
\(\frac{2x-y}{y}=\frac{3}{4}\Leftrightarrow\frac{2x}{y}-1=\frac{3}{4}\Leftrightarrow\frac{2x}{y}=\frac{7}{4}\Leftrightarrow x=\frac{7}{8}y\)
\(A=\frac{3x+4y}{5y}=\frac{3\cdot\frac{7}{8}y+4y}{5y}=\frac{y\cdot\left(\frac{21}{8}+4\right)}{5y}=\frac{21+32}{40}=\frac{53}{40}\)
bạn ghi rõ hộ mình với.mình
không hiểu