Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2022 lúc 21:18

\(=\left(a^{10}\right)^2+\left(a^4\right)^5=2a^{20}\)

Nguyễn Minh Quân
Xem chi tiết
HT.Phong (9A5)
17 tháng 8 2023 lúc 18:16

Ta có:

Tập hợp A:
\(A=\left\{1;2;3;5;8\right\}\)

Tập hợp B:

\(B=\left\{-1;0;1;5;9\right\}\)

Mà: \(A\cup B\)

\(\Rightarrow A\cup B=\left\{-1;0;1;2;3;5;8;9\right\}\)

⇒ Chọn B

Nguyễn Lê Phước Thịnh
17 tháng 8 2023 lúc 18:16

Chọn B

ManDoo Ami 태국
Xem chi tiết
Lê Thị Thục Hiền
26 tháng 7 2021 lúc 16:06

Câu 6:C

Câu 8:C

Câu 9:Tìm phần bù của B trong A có nghĩa là tìm A\B

Ý D

Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 23:05

Câu 6: C

Câu 8: C

Câu 9: D

vaqddddd
Xem chi tiết
Nguyễn Quốc Vinh
Xem chi tiết
Kiệt Nguyễn
13 tháng 1 2020 lúc 18:38

BĐT cần chứng minh tương đương với

\(\left(1-\frac{a^5-a^2}{a^5+b^2+c^2}\right)+\left(1-\frac{b^5-b^2}{b^5+c^2+a^2}\right)+\left(1-\frac{c^5-c^2}{c^5+a^2+b^2}\right)\le3\)

hay \(\frac{1}{a^5+b^2+c^2}+\frac{1}{b^5+c^2+a^2}+\frac{1}{c^5+a^2+b^2}\le\frac{3}{a^2+b^2+c^2}\)

Từ \(abc\ge1\) ta có:

\(\frac{1}{a^5+b^2+c^2}\le\frac{1}{\frac{a^5}{abc}+b^2+c^2}=\frac{1}{\frac{a^4}{bc}+b^2+c^2}\)

\(\le\frac{1}{\frac{2a^4}{b^2+c^2}+b^2+c^2}=\frac{b^2+c^2}{2a^4+\left(b^2+c^2\right)^2}\)

Do \(4u^2+v^2\ge4uv\Leftrightarrow4u^2+v^2\ge\frac{2}{3}\left(u+v\right)^2\)nên 

\(2a^4+\left(b^2+c^2\right)^2\ge\frac{2}{3}\left(a^2+b^2+c^2\right)^2\)

Suy ra \(\frac{1}{a^5+b^2+c^2}\le\frac{3\left(b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)^2}\)

Tương tự ta có \(\frac{1}{b^5+c^2+a^2}\le\frac{3\left(c^2+a^2\right)}{2\left(a^2+b^2+c^2\right)^2}\)

và \(\frac{1}{c^5+a^2+b^2}\le\frac{3\left(a^2+b^2\right)}{2\left(a^2+b^2+c^2\right)^2}\)

Cộng ba vế của các BĐT trên ta được

\(\frac{1}{a^5+b^2+c^2}+\frac{1}{b^5+c^2+a^2}+\frac{1}{c^5+a^2+b^2}\le\frac{3}{a^2+b^2+c^2}\)

Vậy \(\frac{a^5-a^2}{a^5+b^2+c^2}+\frac{b^5-b^2}{b^5+c^2+a^2}+\frac{c^5-c^2}{c^5+a^2+b^2}\ge0\)

(Dấu "="\(\Leftrightarrow a=b=c=1\))

Khách vãng lai đã xóa
Đặng Công Minh Nghĩa
Xem chi tiết
Nguyễn Ngọc Anh Minh
6 tháng 5 2022 lúc 10:00

Ta có

\(\left(a^2+b^2+c^2\right)\left(a^3+b^3+c^3\right)=a^5+a^2b^3+a^2c^3+a^3b^2+b^5+b^2c^3+a^3c^2+b^3c^2+c^5\)

\(\Rightarrow a^5+b^5+c^5=\left(a^2+b^2+c^2\right)\left(a^3+b^3+c^3\right)-a^2b^2\left(a+b\right)-b^2c^2\left(b+c\right)-a^2c^2\left(a+c\right)\)

Do a+b+c=0

=> a+b=-c; b+c=-a; a+c=-b

\(\Rightarrow a^5+b^5+c^5=\left(a^2+b^2+c^2\right)\left(a^3+b^3+c^3\right)+a^2b^2c+ab^2c^2+a^2bc^2=\)

\(=\left(a^2+b^2+c^2\right)\left(a^3+b^3+c^3\right)+abc\left(ab+bc+ac\right)=\)

\(=\left(a^2+b^2+c^2\right)\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]+abc\left(ab+bc+ac\right)=\)

\(=\left(a^2+b^2+c^2\right).\left[\left(-c^3\right)-3ab.\left(-c\right)+c^3\right]+abc\left(ab+bc+ac\right)=\)

\(=\left(a^2+b^2+c^2\right).3abc+abc\left(ab+bc+ab\right)=\)

\(=abc.\left[3\left(a^2+b^2+c^2\right)+ab+bc+ac\right]=\)

\(=abc\left[\dfrac{5}{2}.\left(a^2+b^2+c^2\right)+\dfrac{a^2+b^2+c^2+2ab+2bc+2ac}{2}\right]=\)

\(=abc.\left[\dfrac{5}{2}.\left(a^2+b^2+c^2\right)+\dfrac{\left(a+b+c\right)^2}{2}\right]=\)

\(=abc.\dfrac{5}{2}.\left(a^2+b^2+c^2\right)\)

\(\Rightarrow\dfrac{a^5+b^5+c^5}{5}=abc.\dfrac{a^2+b^2+c^2}{2}\left(đpcm\right)\)

nguyen do bich tra
Xem chi tiết
Thắng Nguyễn
25 tháng 6 2017 lúc 22:23

Problem 3 IMO 2005 (Day 1) :D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 12 2017 lúc 7:24

a × 3 = 3 × a     a : 1 = a

(a × b) × 5 = a × (b × 5)     a : a = 1 (a khác 0)

a × 1 = 1 × a = a     0 : a = 0 (a khác 0)

Phan Hằng Giang
Xem chi tiết
Con Chim 7 Màu
13 tháng 5 2019 lúc 7:49

Vì vai trò của a,b,c như nhau,không mất tính tổng quát ta có:\(a\le b\le c\le1\Rightarrow\hept{\begin{cases}a-1\le0\\b-1\le0\\c-1\le0\end{cases}}\)

Áp dụng BĐT Cô-si ta có:

\(\frac{a^2}{a^2+b^5+c^5}\le\frac{a^2}{3\sqrt[3]{a^2b^5c^5}}=\frac{a^2}{3bc}\)

Tương tự:\(\frac{b^2}{b^2+a^5+c^5}\le\frac{b^2}{3ac};\frac{c^2}{c^2+a^5+b^5}\le\frac{c^2}{3ab}\)

Cộng vế với vế của 3 BĐT trên ta đươc:

\(\frac{a^2}{a^2+b^5+c^5}+\frac{b^2}{b^2+a^5+c^5}+\frac{c^2}{c^2+a^5+b^5}\le\frac{a^2}{3bc}+\frac{b^2}{3ac}+\frac{c^2}{3ab}=\frac{a^3+b^3+c^3}{3}\)

Xét \(a^3+b^3+c^3\le3\)

\(\Leftrightarrow\left(a^3-1\right)+\left(b^3-1\right)+\left(c^3-1\right)\le0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a+1\right)+\left(b-1\right)\left(b^2+b+1\right)+\left(c-1\right)\left(c^2+c+1\right)\le0\) (đúng)

Từ đó suy ra:  

\(\frac{a^2}{a^2+b^5+c^5}+\frac{b^2}{b^2+a^5+c^5}+\frac{c^2}{c^2+a^5+b^5}\le\frac{a^3+b^3+c^3}{3}\le\frac{3}{3}=1\left(đpcm\right)\)

Dấu '='xảy ra khi\(\hept{\begin{cases}a=b=c\\abc=1\end{cases}\Leftrightarrow a=b=c=1}\)