Cho đa thức
f(x)=ax+b ; g(x)=cx+d
a) CMR: Nếu f(x) = g(x) với mọi x thuộc R thì a=c và b=d
b) Gỉa sử f(x) khác g(x) với mọi x thuộc R
Tìm điều kiện a,b,c,d để f(x) và g(x) ko nhận giá trị nào bằng nhau
1,Tìm các hệ số AB của đa thức f(x) = ax + b, biết : f(1)=1; f(2)=4
2, cho đa thứcf(x) : ax mũ 2 + bx + c = 0 ( vs mọi giá trị x ) . CMR : a=b=c=0
3, Cho đa thức f(x) thỏa mãn, f(x) + x. f(-x) = x+1 vs mọi giá trị của x. Tính f(1)
Tìm nghiệm của đa thức f (x)= 2x-1 . Xác định a để nghiệm của đa thức
f(x) cũng là nghiệm của đa thức g(x)=4x^2-ax+1
f(x)=0
=>x=1/2
g(1/2)=0
=>1-1/2a+1=0
=>2-1/2a=0
=>a=4
cho đa thứcF(x)xác định với mọi x thỏa mãn điều kiện f(x)+3*f(1/x)=x2. tính f(2)
cho đa thứcF(x)xác định với mọi x, biết: f(x)+x*f(-x)=x+1. tính(1)
cho đa thứcF(x)xác định với mọi x thỏa mãn điều kiện f(x)+3*f(1/2)=x2. tính f(2)
cho đa thứcF(x)xác định với mọi x, biết: f(x)+x*f(-x)=x+1. tính(1)
Toán lớp 7
ai tích mình mình tích lại nh nha
cho đa thứcf(x) thỏa mãn: 3f(x)+2f(1-x)=2x+9 với mọi x
tinh f(2)=?
Tìm m để đa thứcf(x)= (m-1) x^2-3mx+2 có một nghiệm x = 1.
giúp mình với
Thay x=1 vào f(x), ta được:
\(\left(m-1\right)\cdot1^2-3m\cdot1+2=0\)
\(\Leftrightarrow m-1-3m+2=0\)
\(\Leftrightarrow-2m=-1\)
hay \(m=\dfrac{1}{2}\)
Ta có :
Ta có :
\(f\left(1\right)=\left(m-1\right)1^2-3m.1+2=0\text{⇔}-2m+1=0\text{⇔}m=\dfrac{1}{2}\)
Với \(x=1\) thì \(f\left(x\right)=\left(m-1\right).1^2-3m.1+2=m-1-3m+2=-2m+1\)
\(f\left(x\right)=0\Leftrightarrow-2m+1=0\Leftrightarrow m=\dfrac{1}{2}\)
Vậy \(m=\dfrac{1}{2}\)
Bài 1. Cho hai đa thức
f (x)= -2x^4-3x^3+4x^4-x^2+5x+3x^2+5x^3+6 g (x)= x^4-x^3+x^2-5x-x^3-2x^2+3
a) Thu gọn và sắp xếp đa thức f (x) và g (x) theo lũy thừa giảm dần của biến; cho biết bậc, hệ
số cao nhất, hệ số tự do của mỗi đa thức.
b) Tìm các đa thức h (x) và k (x), biết
h (x)= f (x)+ g (x) k (x)= f (x)-2g (x)-4x^2
c) Tính giá trị của đa thức f (x) khi x là số nguyên, thỏa mãn k (x)= 0.
d) Tìm giá trị nhỏ nhất của đa thức h (x) CHỈ CẦN LÀM CÂU c,d THÔI, a,b ko cần phải làm
Bài 2. (2.0 điểm)
a) Tìm tất cả các giá trị nguyên của biến x để biểu thức sau nhận
giá trị nguyên M= 9x+5/3x-1
1:
a: f(x)=2x^4+2x^3+2x^2+5x+6
g(x)=x^4-2x^3-x^2-5x+3
c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9
K(x)=f(x)-2g(x)-4x^2
=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2
=6x^3+15x
c: K(x)=0
=>6x^3+15x=0
=>3x(2x^2+5)=0
=>x=0
d: H(x)=3x^4+x^2+9>=9
Dấu = xảy ra khi x=0
Cho đa thứcf(x)=-mx^2+1
g(x)=2x^4+1
a)Tìm m để f(x) có nghiệm là -1
b)Với m vừa tìm được ở câu a,hãy tìm x để f(x)=g(x)
Bài 1.
1, Cho hai đa thức
f(x) = x5 - 3x4 + 7x3 - 9x2 + 8x - 2
g(x)= x2 -2x + a
Xác định giá trị của a để tồn tại đa thức p(x) thỏa mãn f(x)= g(x) . p(x) với mọi giá trị của x.
Bài 3.
Cho tam giác nhọn ABC, gọi H là trục tâm và O là tâm đường tròn ngoại tiếp tam giác ABC.
1) Chứng minh rằng AH=AO khi và chỉ khi BAC= 60o
2) BD, CE lần lượt là hai đường phân giác trong của góc B và C (D ∈ AC, E ∈ AB). M là điểm trên cạnh BC sao cho tam giác MDE là tam giác đều.
Chứng minh rằng AH=AO
Bài 1.
1, Cho hai đa thức
f(x) = x5 - 3x4 + 7x3 - 9x2 + 8x - 2
g(x)= x2 -2x + a
Xác định giá trị của a để tồn tại đa thức p(x) thỏa mãn f(x)= g(x) . p(x) với mọi giá trị của x.
Bài 3.
Cho tam giác nhọn ABC, gọi H là trục tâm và O là tâm đường tròn ngoại tiếp tam giác ABC.
1) Chứng minh rằng AH=AO khi và chỉ khi BAC= 60o
2) BD, CE lần lượt là hai đường phân giác trong của góc B và C (D ∈ AC, E ∈ AB). M là điểm trên cạnh BC sao cho tam giác MDE là tam giác đều.
Chứng minh rằng AH=AO
1:
\(f\left(x\right)=g\left(x\right)\cdot p\left(x\right)\)
=>\(p\left(x\right)=\dfrac{f\left(x\right)}{g\left(x\right)}\)
\(=\dfrac{x^5-3x^4+7x^3-9x^2+8x-2}{x^2-2x+a}\)
Để P(x) tồn tại với mọi x thì \(x^2-2x+a< >0\)(2) với mọi x
Giả sử \(x^2-2x+a=0\)(1)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot a=4-4a\)
Để phương trình (1)có nghiệm thì 4-4a>=0
=>a<=1
Do đó: Để bất phương trình (2) luôn đúng với mọi x thì a>1
Bài 3:
1:
AH=AO
=>H trùng với O
=>Tâm đường tròn ngoại tiếp ΔABC trùng với trực tâm của tam giác
=>ΔABC đều
=>\(\widehat{BAC}=60^0\)
Cho 2 đa thức
f(x)=-x5+6x3+8x2+12x+x5+\(\dfrac{2}{3}+2x^{4^{ }}+\dfrac{1}{3}\)
g(x)=2x4+6x3+17x2+12x-26
1. Thu gọn và sắp xếp f(x) theo lũy thừa giảm của biến
2. Tính h(x)=f(x)-g(x)
2. Tìm nghiệm h(x)
1.
\(f\left(x\right)=2x^4+6x^3+8x^2+12x+1\)
2.
\(h\left(x\right)=\left(2x^4+6x^3+8x^2+12x+1\right)-\left(2x^4+6x^3+17x^2+12x-26\right)\)
\(=-9x^2+27\)
3.
\(h\left(x\right)=0\Leftrightarrow-9x^2+27=0\)
\(\Leftrightarrow x^2=3\Rightarrow x=\pm\sqrt{3}\)