Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Son Nguyen
Xem chi tiết
Chiem Nguyênthi
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 6 2023 lúc 8:11

1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)

=-27x^3-18x^2+4x+10

2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27

=7x^3+37x^2+46x+33

5:

\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)

\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)

=7x^3-48x^2+8x-35

huy trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 0:00

\(P\left(x\right)=3x^4+9x^2-2x-3\)

\(Q\left(x\right)=\left(3x^4-3x^4\right)+\left(x^2-4x^2+1.5x^2\right)+2x+1=-1.5x^2+2x+1\)

Phạm Thanh Thảo
Xem chi tiết
Hoàng Kim Lê
Xem chi tiết
vũ linh
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
18 tháng 4 2023 lúc 22:48

`P(x)=`\( 2x^4 + 3x^3 + 3x^2 - x^4 - 4x + 2 - 2x^2 + 6x\)

`= (2x^4-x^4)+3x^3+(3x^2-2x^2)+(-4x+6x)+2`

`= x^4+3x^3+x^2+2x+2`

 

`Q(x)=`\(x^4 + 3x^2 + 5x - 1 - x^2 - 3x + 2 + x^3\)

`= x^4+x^3+(3x^2-x^2)+(5x-3x)+(-1+2)`

`= x^4+x^3+2x^2+2x+1`

 

`P(x)+Q(x)=(x^4+3x^3+x^2+2x+2)+(x^4+x^3+2x^2+2x+1)`

`=x^4+3x^3+x^2+2x+2+x^4+x^3+2x^2+2x+1`

`=(x^4+x^4)+(3x^3+x^3)+(x^2+2x^2)+(2x+2x)+(2+1)`

`= 2x^4+4x^3+3x^2+4x+3`

`@`\(\text{dn inactive.}\)

Nguyễn Lê Phước Thịnh
18 tháng 4 2023 lúc 22:41

P(x)=x^4+3x^3+x^2+2x+2

Q(x)=x^4+x^3+2x^2+2x+1

P(x)+Q(x)=2x^4+4x^3+3x^2+4x+3

Luni
18 tháng 4 2023 lúc 22:50

P(x) = 2x4 + 3x3 + 3x2 - x4 - 4x + 2 - 2x2 + 6x

Q(x) = x4 + 3x2 + 5x - 1 - x2 - 3x + 2 + x3

P(x)+Q(x) = 2x4 + 3x3 + 3x2 - x4 - 4x + 2 - 2x2 + 6x + x4 + 3x2 + 5x - 1 - x2 - 3x + 2 + x3

P(x)+Q(x) = (2x4-x4+x4) + (3x3+x3) + (3x2-2x2+3x2-x2) - (4x-6x-5x+3x) +(2-1+2)

P(x)+Q(x) = 4x3+3x2-4x+3

THẢO HUỲNH THẠCH
Xem chi tiết
Lấp La Lấp Lánh
16 tháng 9 2021 lúc 9:58

1) \(\left(x+1\right)\left(x+2\right)-3x\left(x-4\right)=x^2+3x+2-3x^2+12x=-2x^2+15x+2\)

2) \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)\)

\(\Leftrightarrow3x^2-10x+8=3x^2-27x\)

\(\Leftrightarrow17x=-8\Leftrightarrow x=-\dfrac{8}{17}\)

3) \(-3\left(x-4\right)\left(x-2\right)-x^2\left(-3x+18\right)+24x-25\)

\(=-3x^3+6x^2+12x^2-24x+3x^3-18x^2+24x-25=-25\)

Mii Bangtan Sonyeondan
Xem chi tiết
Mii Bangtan Sonyeondan
8 tháng 2 2021 lúc 15:47

giúp mình với ạ câu nào cũng được

Nguyen Dang Khoa
Xem chi tiết
Nguyễn Thành Trương
20 tháng 3 2020 lúc 14:54

Bài 1.

\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)

Khách vãng lai đã xóa
Nguyễn Thành Trương
20 tháng 3 2020 lúc 15:02

Bài 2.

\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)

ĐK: \(x\ne2\)

\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)

ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)

\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)

Khách vãng lai đã xóa
Nguyễn Thành Trương
20 tháng 3 2020 lúc 15:21

Bài 2.

\(a)5 + \dfrac{{96}}{{{x^2} - 16}} = \dfrac{{2x - 1}}{{x + 4}} - \dfrac{{3x - 1}}{{4 - x}}\)

ĐK: \(x\ne\pm4\)

\( Pt \Leftrightarrow \dfrac{{96}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} - \dfrac{{2x - 1}}{{x + 4}} - \dfrac{{3x - 1}}{{x - 4}} = - 5\\ \Leftrightarrow \dfrac{{96 - \left( {2x - 1} \right)\left( {x - 4} \right) - \left( {3x - 1} \right)\left( {x + 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = - 5\\ \Leftrightarrow \dfrac{{ - 5{x^2} - 2x + 96}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = - 5\\ \Leftrightarrow - 5{x^2} - 2x + 96 = - 5\left( {{x^2} - 16} \right)\\ \Leftrightarrow 96 - 2x = 80\\ \Leftrightarrow - 2x = - 16\\ \Leftrightarrow x = 8\left( {tm} \right)\\ b)\dfrac{{3x + 2}}{{3x - 2}} - \dfrac{6}{{2 + 3x}} = \dfrac{{9{x^2}}}{{9{x^2} - 4}} \)

ĐK: \(x \ne \dfrac{2}{3};x \ne -\dfrac{2}{3}\)

\( Pt \Leftrightarrow \dfrac{{3x + 2}}{{3x - 2}} - \dfrac{6}{{2 + 3x}} - \dfrac{{9{x^2}}}{{9{x^2} - 4}} = 0\\ \Leftrightarrow \dfrac{{{{\left( {2 + 3x} \right)}^2} - 6\left( {3x - 2} \right) - 9{x^2}}}{{\left( {3x - 2} \right)\left( {2 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{16 - 6x}}{{\left( {3 - 2x} \right)\left( {2 + 3x} \right)}} = 0\\ \Leftrightarrow 16 - 6x = 0\\ \Leftrightarrow - 6x = - 16\\ \Leftrightarrow x = \dfrac{8}{3}\left( {tm} \right)\\ c)\dfrac{{x + 1}}{{{x^2} + x + 1}} - \dfrac{{x - 1}}{{{x^2} - x + 1}} = \dfrac{3}{{x\left( {{x^4} + {x^2} + 1} \right)}} \)

Ta có: \(x(x^4+x^2+1)=x[(x^2+1)^2-x^2]=x(x^2+x+1)(x^2-x+1)\)

Do \(\left\{ \begin{array}{l} {x^2} + x + 1 = {\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0\forall x\\ {x^2} - x + 1 = \left( {x - \dfrac{1}{2}} \right) + \dfrac{3}{4} > 0\forall x \end{array} \right.\) nên phương trình xác định với mọi $x \ne 0$

Quy đồng, rồi biến đổi phương trình về dạng \(2x=3 \Leftrightarrow x =\dfrac{3}{2} (tm)\)

Khách vãng lai đã xóa
Hoàng Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2021 lúc 0:44

a) Ta có: \(\dfrac{x^2+38x+4}{2x^2+17x+1}-\dfrac{3x^2-4x-2}{2x^2+17x+1}\)

\(=\dfrac{x^2+38x+4-3x^2+4x+2}{2x^2+17x+1}\)

\(=\dfrac{-2x^2+42x+6}{2x^2+17x+1}\)

c) Ta có: \(C=\dfrac{-x}{3x-2}+\dfrac{7x-4}{3x-2}\)

\(=\dfrac{-x+7x-4}{3x-2}\)

\(=\dfrac{6x-4}{3x-2}=2\)