Cho D = \(5+5^2+5^3+5^4+...+5^{19}+5^{20}\)
Tìm số dư khi chia D cho 31
d=5+5^2+5^3+...+5^19+5^20
tìm số dư khi chia d cho 31
d = 5(1 + 5 + 52) + 54(1 + 5 + 52) + ...+ 518(1 + 5 + 52)
= (1 + 5 + 52).(5 + 54 +...+ 518)
= 31.((5 + 54 +...+ 518) chia hết cho 31
Vậy: d chia cho 31 không dư
Cho \(A=5+5^2+5^3+5^4+...+5^{19}+5^{20}\). Tìm số dư khi A chia cho 31.
Ta có :
A=5 + 5^2 + 5^3 + 5^4 + ....... + 5^19 + 5^20
=> Tổng A có số hạng tử là: (20 -1)/1 + 1 = 20
=> Ta có thể chia tổng A thành 6 nhóm 3 số và thừa ra ngoài 2 số
A = (5 + 5^2) + (5^3 + 5^4 + 5^5) + .......... + (5^18 + 5^19 + 5^20)
=> A = ( 5 + 25) + 5^3*(1 + 5 + 5^2) + ...... + 5^18*(1 + 5 + 5^2)
=> A = 30 + (1 + 5 + 5^2)*(5^3 + .... + 5^18)
=>A = 30 + 31*(5^3 + ....... + 5^18)
Vì 31 chia hết cho 31 nên 31*(5^3 + ..... +5^18) cùng chia hết cho 31
mà 30 chia cho 31 dư 30
=> Tổng A chia cho 31 dư 30
Vậy A chia cho 31 dư 30
\(A=5+5^2+5^3\left(1+5+5^2\right)+5^6\left(1+5+5^2\right)+...+5^{18}\left(1+5+5^2\right)\)
\(A=5+25+\left(1+5+5^2\right)\left(5^3+5^6+...+5^{18}\right)\)
\(A=30+31\left(5^3+5^6+...+5^{18}\right)\)
Ta thấy \(31\left(5^3+5^6+...+5^{18}\right)⋮31\) dư 0
\(A=30+31\left(5^3+5^6+...+5^{18}\right)\div31\) dư 30
Ta có :
A = 5+5^2+(5^3+5^4+5^5)+(5^6+5^7+5^8)+...+(5^18+5^19+5^20)
A=30+5^3×(1+5+5^2)+5^6×(1+5+5^2)+...+5^18×(1+5+5^2)
A=30+5^3×31+5^6×31+...+5^18×31
Ta có 5^3×31 chia hết cho 31
5^6×31chia hết cho 31
........
5^18×31chia hết chi 31
=>5^3×31+5^6×31+...+5^18×31 chia hết cho 31
=>30+5^3×31+5^6×31+...+5^18×31 chia 31 dư 30
=> A : 31 dư 30
Vậy .....
Cho D = 5 + 52 + 53 +... + 520
Tìm số dư khi chia D cho 31
Đặt \(D=5+5^2+5^3+...+5^{20}\).
\(\Leftrightarrow D=5+5^2+5^3+5^4+5^5+5^6+...+5^{18}+5^{19}+5^{20}\). Ta nhóm 3 số hạng một
\(\Leftrightarrow D=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)...+\left(5^{18}+5^{19}+5^{20}\right)\)
\(\Leftrightarrow D=31.5+31.5^4+...+31.5^{19}\)
\(\Leftrightarrow D=31\left(5+5^4+...+5^{19}\right)\)
Đoạn tiếp tự làm nhé bạn!
Ta có: D=5+52+53+54+55+56+...+518+519+520
=> D=(5+52+53)+(54+55+56)+...+(518+519+520)
=> D=(5.1+5.5+5.52)+(54.1+54.5+54.52)+...+(518.1+518.5+518.52)
=> D=5(1+5+52)+54(1+5+52)+...+518(1+5+52)
=> D=5(1+5+25)+54(1+5+25)+...+518(1+5+25)
=> D=5.31+54.31+518.31
=> D=(5+54+...+518).31 chia hết cho 3
Vậy D chia hết cho 31
D = 5 + 52 + 53 +... + 520
= 5 + 52 + (53 + 54 + 55) + (56 + 57 + 58 ) + (59 + 510 + 511 ) +...+ (518 + 519 + 520 )
= 30 + 53 (1 + 5 + 52) + 56 (1 + 5 + 52 ) + 59 (1 + 5 + 52 ) +...+ 518 (1 + 5 + 52)
= 30 + 53 . 31 + 56 . 31 + 59 . 31 +...+ 518 . 31
= 30 + 31 . ( 53 + 56 + 59 +...+ 518)
Ta thấy 31. ( 53 + 56 + 59 +...+ 518) chia hết cho 31 nên 30 + 31 ( 53 + 56 + 59 +...+ 518) chia cho 31 dư 30
Vậy D chia 31 dư 30
Cho A = 5+52+53+.....+520
a) Tính A
b) Tìm số dư của D khi chia cho 31
a/ Ta có:
\(5A=5^2+5^3+...+5^{21}\)
\(\Rightarrow5A-A=\left(5^2+5^3+...+5^{21}\right)-\left(5+5^2+...+5^{20}\right)\)
\(\Rightarrow4A=5^{21}-5\)
\(\Rightarrow A=\dfrac{5^{21}-5}{4}\)
b/ D ở đâu thế???
a) Ta có:
A = 5 + 52 + 53 +.....+ 520
5A = 5(5 + 52 + 53 +.....+ 520)
5A = 52 + 53 +.....+ 520 + 521
5A - A = (52 + 53 +.....+ 520 + 521) - (5 + 52 + 53 +.....+ 520)
4A = 521 - 5
A = (521 - 5) : 4
b) Ta có:
A = 5 + 52 + 53 +.....+ 520
= 5 + 52 + (53 + 54 + 55) + (56 + 57 + 58) +....+ (518 + 519 + 520)
= 30 + 53(1 + 5 + 52) + 56(1 + 5 + 52) +....+ 518(1 + 5 + 52)
= 30 + 53.31 + 56.31 +...+ 518.31
= 30 + (53 + 56 +....+ 518) . 31
Vậy số dư khi chia D cho 31 là 30
Tìm số dư khi chia A = 1 + 5 + 5^2 + 5^3 + 5^4 +...+ 5^9 cho 31
\(A=1+5+5^2+5^3+5^4+...+5^9.\)
\(=1+5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+5^7\left(1+5+5^2\right)\)
\(=\left(1+5+5^2\right)\left(5+5^4+5^7\right)+1\)
\(=31\left(5+5^4+5^7\right)+1\)
Vậy A chia cho 31 dư 1
1. Chứng tỏ rằng:
a. 105 + 35 chia hết cho 9 và cho 5
b. 105 + 98 chia hết cho 2 và cho 9
c. 102012 + 8 chia hết cho 3 và cho 9
d. 11...1 (27 chữ số 1) chia hết cho 27
2. Một số tự nhiên khi chia cho 4, cho 5, cho 6 đều dư 1. Tìm số đó biết rằng số đó chia hết cho 7 và nhỏ hơn 400.
3. Một số tự nhiên a khi chia hết cho 4 thì dư 3, chia cho 5 thì dư 4, chia cho 6 thì dư 5. Tìm số a, biết rằng 200 _< a _< 400.
4. Tìm số tự nhiên nhỏ nhất khi chia cho 15, 20, 25 được số dư lần lượt là 5, 10, 15.
Bài 1: Cùng một công việc nếu mỗi người làm riêng thì 3 người A,B,C hoàn thành công việc trong thời gian lần lượt là 6 giờ, 8 giờ, 12 giờ. Hai người B và C làm chung trong 2 giờ sau đó người C chuyển đi làm việc khác, người A cùng làm với người B tiếp tục công việc cho đế khi hoàn thành. Hỏi người A làm trong mấy giờ ?
Bài 2: Cho D = 5 + 52 + 53 + 54 + ... + 519 + 520. Tìm số dư khi D chia cho 31.
Giải chi tiết các bạn nhé ^.^
1 giờ thì người A làm được 1/6 , người B làm được 1/8 và người C làm được 1/12 công việc.
Sau 2h thì cả người B và C làm được: 2/8 + 2/12=1/4 + 1/6=(3+2)/12=5/12 công việc.
Số công việc còn lại 7/12=14/24 công việc
Ta có: 14/24=8/24 + 6/24=2/6+2/8 =2.A+2.B
Vậy người A làm trong 2 giờ
Bài 2.
D+1=(1+5+52)+(53+54+55)+(56+57+58)+...+(518+519+520)
=(1+5+52)(1+53+56+...+518)=31.(1+53+56+...+518)
Như vậy (D+1) chia hết cho 31
Vậy D chia cho 31 sẽ dư 30
1/ khi chia số tự nhiên a cho 255 ta được số dư là 170 hỏi a có chia hết cho 85 ko?
2/ chứng tỏ rằng
a, S1= 5+52+53+54+................+530 chia hết cho 6 và 31
b,S2=3+32+33+..................+331chia hết cho 4,13 và 40
c, S3= 88+220chia hết cho 17
d, S4= 165+215chia hết cho 33
Cho 4 số nguyên a,b,c,d khi chia cho 5 có dư lần lượt là : 3,2,1,0
a, Tìm dư của a+b+c+d ; a-b-c-d ; a-b+c+d ; a+c-b-d khi chia cho 5
b, Tìm 2 số có tổng chia hết cho 5
c, Tìm 3 số có tổng chia hết cho 5