D = 1 + 5 + 52 + 53 + 54 +...+ 519 + 520 - 1
D = (1 + 5 + 52) + (53 + 54 + 55) +...+ (518 + 519 + 520) - 1
D = (1 + 5 + 52) + 53 (1 + 5 + 52) +...+ 518 (1 + 5 + 52) - 1
D = (1 + 5 + 52) (1 + 53 +...+ 518) - 1
D = 31 (1 + 53 +...+ 518) - 1
D = 31 (1 + 53 +...+ 518) - 31 + 30
Vì 31 (1 + 53 +...+ 518) - 31 chia hết cho 31
Nên 31 (1 + 53 +...+ 518) - 31 + 30 chia cho 31 dư 30
Vậy D chia 31 dư 30
D =5+5^2+5^3+......+5^19+5^20
→ Tổng D có số các số hạng là : (20-1)/1+1 =20
→ Ta chia tổng D thành 6 nhóm mỗi nhóm gồm 3 số và thừa ra ngoài 2 số
→ D = (5+5^2) + (5^3+5^4+5^5) + (5^6+5^7+5^8) + ........ + (5^18+5^19+5^20)
= (5+25) + 5^3.(1+5+5^2) + 5^6.(1+5+5^2) + ......... + 5^18.(1+5+5^2)
= 30 + (5^3+5^6+.......+5^18).(1+5+25)
= 30 + (5^3+5^6+.......+5^18).31
Ta thấy : 31 chia hết cho 31 nên (5^3+...+5^18).31 chia hết cho 31
30 chia cho 31 dư 30
→ D chia cho 31 dư 30
Vậy D chia cho 31 dư 30