cho tam giác ABC cân tại A, biết A = 90độ, AB = 4cm. tính độ dài cạnh AC, BC
Bài 1: Cho tam giác ABC cân tại B, kẻ CH vuông góc AB. Biết AH= 1cm, BH= 4cm. Tính độ dài AC.
Bài 2: Cho tam giác ABC vuông tại A. Cạnh AB= 5cm đường cao AH, BH= 3cm, CH= 8cm. Tính AC.
Bài 3: Cho tam giác ABC vuông tại A, có \(\frac{AB}{BC}=\frac{3}{5}\)và AC= 16cm. Tính độ dài các cạnh AB=BC.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
CHO TAM GIÁC ABC , CÂN TẠI A . BIẾT BC 6cm , AH=4cm .TÍNH ĐỘ DÀI CẠNH AB .
cho tam giác ABC, Â=90độ, AB= 6cm,AC=4cm, lấy điểm D trên cạnh BC sao cho CD=2cm. Qua C kẻ đường thẳng vuông góc vs BC cắt cạnh AC TẠI E. tính độ dài cạnh DE (cm)
\(\text{Xét}:\)\(\Delta CDE\)\(\text{và}\)\(\Delta CAB\)\(,\)\(\text{ta có:}\)
\(\widehat{C}\)\(:\)\(chung\)
\(\widehat{CDE}=\widehat{CAB}=90^o\)
\(\Rightarrow\Delta CDE\text{∽}\Delta CAB\left(g-g\right)\)
\(\Rightarrow\frac{CD}{DE}=\frac{CA}{AB}\)\(\text{hay}\)\(\frac{2}{DE}=\frac{4}{6}\)
\(\Rightarrow DE=\left(6.2\right):4=3\left(cm\right)\)
Trả lời:
Xét tam giác DEC và tam giác ABC có:
góc EDC = góc BAC = 90o
góc C chung
=> tam giác DEC ~ tam giác ABC ( g - g )
=> DE/AB = CD/AC ( tỉ số đồng dạng )
=> DE/6 = 2/4
=> DE = 3 ( cm )
Vậy DE = 3 cm
Cho tam giác ABC có BC= 1cm; AC= 7cm và độ dài cạnh AB là một số nguyên (cm).Tính độ dài AB và cho biết tam giác ABC là tam giác gì?
A. AB= 7cm và tam giác ABC vuông tại A
B. AB= 7cm và tam giác ABC cân tại A
C. AB= 7cm và tam giác ABC vuông cân tại A
D. AB= 8cm và tam giác ABC vuông tại B
Cho tam giác ABC vuông cân tại A. Tính độ dài cạnh BC biết A B = A C = 2 d m
A. B C = 4 d m
B. B C = 6 d m
C. B C = 8 d m
D. B C = 8 d m
Cho tam giác ABC vuông cân A có AB= 4cm. Tính độ dài các cạnh AC và BC
tam giác ABC vc tại A (gt) => AB = AC = 4
vì tg ABC vuông nên : AB^2 + AC^2 = BC^2
=> BC^2 = 32
=> BC = \(\sqrt{32}\) do BC > 0
Cho tam giác ABC cân tại A, AB = AC = 4cm, BC = 2cm. Tính độ dài đường cao BD của tam giác.
Làm theo cách lớp 8:
Từ A kẻ AH _|_ BC (H nằm trên BC)
Mà tam giác ABC cân tại A => AH đồng thời là trung tuyến => BH = HC = 1cm
Xét tam giác AHB vuông tại H
=> AH2 = AB2 - BH2 = 42 - 12 = 15cm
=> \(AH=\sqrt{15}cm\)
ΔAHC ~ ΔBDC (g.g) vì:
+ Góc C chung
+ \(\widehat{AHC}=\widehat{BDC}=90^0\)
=> \(\frac{AH}{AC}=\frac{BD}{BC}\Rightarrow BD=\frac{AH.BC}{AC}=\frac{2\sqrt{15}}{4}=\frac{\sqrt{15}}{2}cm\)
Vậy \(BD=\frac{\sqrt{15}}{2}cm\)
Cho tam giác ABC vuông tại A, có đường cao AH (H thuộc BC). Biết độ dài đoạn AC bằng 5cm, đoạn HC bằng 4cm. Tính độ dài các cạnh AB và BC.
Xét \(\Delta AHC\left(\widehat{AHC}=90^o\right)\) có:
\(AC^2=AH^2+HC^2\) (định lí pitago)
\(\Rightarrow AH^2=AC^2-HC^2\)
\(\Rightarrow AH=\sqrt{5^2-4^2}=3\left(cm\right)\)
Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\) (hệ thức lượng trong tam giác vuông)
\(\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{AH^2}-\dfrac{1}{AC^2}\)
\(\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}\)
\(\Rightarrow AB=3,75\left(cm\right)\)
Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có:
\(BC^2=AB^2+AC^2\) (định lí pitago)
\(\Rightarrow BC=\sqrt{3,75^2+5^2}=6,25\left(cm\right)\)
\(AH=\sqrt{AC^2-HC^2}=3\left(cm\right)\)
\(HB=\dfrac{AH^2}{HC}=\dfrac{3^2}{4}=2.25\left(cm\right)\)
BC=HB+HC=4+2,25=6,25(cm)
\(AB=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)
Cho tam giác ABC vuông tại A với đường phân giác trong AD (Dnằm trên cạnh BC). Biết AB 3cm AC 4cm. Tính độ dài đoạn thẳng BD.
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Xét ΔABC có
AD là đường phân giác trong ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)
Do đó: \(\dfrac{BD}{3}=\dfrac{5}{7}\)
hay \(BD=\dfrac{15}{7}cm\)
Vậy: \(BD=\dfrac{15}{7}cm\)