Nêu các cách chứng minh BĐT Nesbitt.BĐT Nesbitt là một BĐT khá quen thuộc trong các bài toán BĐT,chúng ta hay tìm những lời giải cho BĐT này nhé!Đề: Cho a,b,c0.CMR frac{a}{b+c}+frac{b}{c+a}+frac{c}{a+b}gefrac{3}{2}Cách 1:Thật vậy,ta có: VTfrac{a^2}{aleft(b+cright)}+frac{b^2}{bleft(c+aright)}+frac{c^2}{cleft(a+bright)}gefrac{left(a+b+cright)^2}{2left(ab+bc+caright)}gefrac{left(a+b+cright)^2}{2.frac{left(a+b+cright)^2}{3}}frac{1}{frac{2}{3}}.1frac{3}{2}^{left(đpcmright)}Cách 2:Ta có: BĐT Leftright...
Đọc tiếp
Nêu các cách chứng minh BĐT Nesbitt.
BĐT Nesbitt là một BĐT khá quen thuộc trong các bài toán BĐT,chúng ta hay tìm những lời giải cho BĐT này nhé!
Đề: Cho a,b,c>0.CMR \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Cách 1:
Thật vậy,ta có: \(VT=\frac{a^2}{a\left(b+c\right)}+\frac{b^2}{b\left(c+a\right)}+\frac{c^2}{c\left(a+b\right)}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2.\frac{\left(a+b+c\right)^2}{3}}=\frac{1}{\frac{2}{3}}.1=\frac{3}{2}^{\left(đpcm\right)}\)
Cách 2:
Ta có: BĐT \(\Leftrightarrow\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\ge\frac{9}{2}\)
\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)
\(\Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)
Áp dụng BĐT AM-GM cho biểu thức trong ngoặc ta có đpcm.
Mọi người hãy cùng tìm thêm các lời giải khác nhé!