Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Têrêsa Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 2 2021 lúc 21:16

a) Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(gt)

Do đó: ΔABN=ΔACM(c-g-c)

Suy ra: BN=CM(hai cạnh tương ứng)

b) Xét ΔAHB và ΔAHC có 

AB=AC(ΔABC cân tại A)

AH chung

HB=HC(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-c-c)

Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay AH⊥BC(đpcm)

c) Ta có: AH⊥BC(cmt)

mà H là trung điểm của BC(gt)

nên AH là đường trung trực của BC

⇔EH là đường trung trực của BC

⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)

Xét ΔEBC có EB=EC(cmt)

nên ΔEBC cân tại E(Định nghĩa tam giác cân)

Hiền Hoàng
Xem chi tiết
✦๖ۣۜAugųsť❦❄
2 tháng 5 2021 lúc 10:25

a, theo pitago đảo: 21+282=1225=352 suy ra tam giác ABC vuông

b,theo pitago

AH2=AB2-BH2=AC2-CH2 suy ra 2AH2=AB2+AC2-BH2-CH

suy ra 2AH2=BC2-BH2-CH2 (Mà BC=BH+CH) suy ra 2AH2=2BHxCH

Khách vãng lai đã xóa
Lelemalin
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 0:19

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

b) Xét ΔAMD và ΔCMH có 

MA=MC(gt)

\(\widehat{AMD}=\widehat{CMH}\)(hai góc đối đỉnh)

MD=MH(gt)

Do đó: ΔAMD=ΔCMH(c-g-c)

Suy ra: AD=HC(Hai cạnh tương ứng)

c) Ta có: ΔAMD=ΔCMH(cmt)

nên \(\widehat{MAD}=\widehat{MCH}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//HC(Dấu hiệu nhận biết hai đường thẳng song song)

hay AD//HB

Xét tứ giác ABHD có 

AD//BH(cmt)

AD=BH(=HC)

Do đó: ABHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: AB//DH(Hai cạnh đối)

van
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 9 2022 lúc 23:04

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAMD và ΔANB có

AM=AN

MD=NB

AD=AB

Do đó: ΔAMD=ΔANB

hoàng nguyễn anh thảo
Xem chi tiết
hoàng nguyễn anh thảo
2 tháng 5 2017 lúc 9:50

bạn nào giúp mk vẽ hình đc không

IS
27 tháng 2 2020 lúc 20:13

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

Khách vãng lai đã xóa
Đoàn Phạm Đức	Khang
26 tháng 2 2023 lúc 19:47

CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn

Bùi Thị Minh Phương
Xem chi tiết
Bùi Thị Minh Phương
2 tháng 7 2021 lúc 10:07

giúp mình bài này với 

 

Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 10:09

a) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)

hay \(\widehat{ABH}=\widehat{ACH}\)

b) Xét ΔABH và ΔACH có 

AB=AC(ΔABC cân tại A)

AH chung

BH=CH(H là trung điểm của BC)

Do đó: ΔABH=ΔACH(c-c-c)

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{MAE}=\widehat{NAE}\)

Xét ΔAME và ΔANE có 

AM=AN(gt)

\(\widehat{MAE}=\widehat{NAE}\)(cmt)

AE chung

Do đó: ΔAME=ΔANE(c-g-c)

c) Ta có: ΔAME=ΔANE(cmt)

nên \(\widehat{AEM}=\widehat{AEN}\)(hai góc tương ứng)

mà \(\widehat{AEM}+\widehat{AEN}=180^0\)(hai góc so le trong)

nên \(\widehat{AEM}=\widehat{AEN}=\dfrac{180^0}{2}=90^0\)

Suy ra: AH⊥MN tại E(1)

Ta có: ΔABH=ΔACH(cmt)

nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

Suy ra: AH⊥BC tại H(2)

Từ (1) và (2) suy ra MN//BC(Đpcm)

Chu Thuy Hanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2022 lúc 16:35

a: Xét ΔMHB vuông tại H và ΔNKC vuông tại K có

BM=CN

\(\widehat{B}=\widehat{C}\)

Do đó: ΔMHB=ΔNKC

b: Ta có: ΔMHB=ΔNKC

nên HB=KC

Ta có: AH+HB=AB

AK+KC=AC

mà BA=AC

và HB=KC

nên AH=AK

c: Xét ΔAHM vuông tại H và ΔAKN vuông tại K có

AH=AK

HM=KN

Do đó: ΔAHM=ΔAKN

Suy ra: AM=AN

しんちゃん
Xem chi tiết
Ngô Ngọc Tâm Anh
17 tháng 12 2021 lúc 16:48

a, Xét ΔABHΔABH và ΔACHΔACH có:

AB=ACAB=AC

ˆBAH=ˆCAHBAH^=CAH^

AHAH chung

⇒ΔABH=ΔACH(c−g−c)

 

b, Xét ΔABCΔABC có: AB=AC

⇒ΔABC⇒ΔABC cân tại A

Xét ΔABCΔABC cân tại A có: AH là đường cao ứng với cạnh đáy BC

⇒AH⇒AH là đường cao

⇒AH⊥BC

Tăng Linh Đạt
Xem chi tiết
Lưu Đức Mạnh
29 tháng 5 2017 lúc 20:13

ĐỀ QUẬN BÌNH TÂN NĂM 2016 - 2017

a) Xét \(\Delta ABH\)và \(\Delta ACH\)ta có:

AH là cạnh chung

AB = AC ( \(\Delta ABC\)cân tại A)

BH = CH ( H là trung điểm của BC)

\(\Rightarrow\Delta ABH=\Delta ACH\left(c-c-c\right)\)

Xét \(\Delta ABC\)cân tại A ta có:

AH là đường trung tuyến ( H là trung điểm của BC)

\(\Rightarrow\)AH là đường cao của \(\Delta ABC\)

\(\Rightarrow AH⊥BC\)tại H.

b) Xét \(\Delta BDH\)vuông tại D và \(\Delta CEH\)vuông tại E ta có:

BH = CH ( H là trung điểm của BC)

\(\widehat{DBH}=\widehat{ECH}\)(\(\Delta ABC\)cân tại A)

\(\Rightarrow\Delta BDH=\Delta CEH\left(ch-gn\right)\)

\(\Rightarrow\)BD = CE ( 2 cạnh tương ứng)

c) Ta có:

AB = AC (\(\Delta ABC\)cân tại A)

BD = CE ( cmt)

\(\Rightarrow AB-BD=AC-CE\)

\(\Rightarrow AD=AE\)

\(\Rightarrow\Delta ADE\)cân tại A

\(\Rightarrow\widehat{ADE}=\frac{180^o-\widehat{DAE}}{2}\)

Mà \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)

Nên \(\widehat{ADE}=\widehat{ABC}\)

Mặt khác 2 góc này nằm ở vị trí đồng vị

\(\Rightarrow\)DE // BC.

d) Nối A với I.

Ta có: 

\(\hept{\begin{cases}HE=HM+ME\left(M\in HE\right)\\HM=EN\left(gt\right)\end{cases}}\)

\(\Rightarrow HE=EN+ME\)

\(\Rightarrow HE=MN\)

Xét \(\Delta AEN\)vuông tại E ta có:

\(\hept{\begin{cases}AN^2=AE^2+EN^2\left(Pitago\right)\\AE=AD\left(cmt\right)\\EN=HM\left(gt\right)\end{cases}}\)

\(\Rightarrow AN^2=AD^2+HM^2\)

\(\Rightarrow AN^2=AD^2+HI^2-MI^2\)

\(\Rightarrow AN^2=AD^2+HI^2-\left(NI^2-MN^2\right)\)

\(\Rightarrow AN^2=AD^2+HI^2-NI^2+HD^2\)

\(\Rightarrow AN^2=AD^2+HD^2+HI^2-NI^2\)

\(\Rightarrow AN^2=AH^2+HI^2-NI^2\)

\(\Rightarrow AN^2=AI^2-NI^2\)

\(\Rightarrow AI^2=AN^2+NI^2\)

\(\Rightarrow\Delta ANI\)vuông tại N ( Định lý Pitago đảo)

\(\Rightarrow IN⊥AN\)tại N.