tính \(\lim\limits_{n\rightarrow+\infty}n\left(\sqrt{n^2-2n}-\sqrt[3]{n^3-3n^2}\right)\)
bài 1
a. \(\lim\limits_{n\rightarrow+\infty}\left(\sqrt[3]{n^3+3n+1}-n\right)\)
b. \(\lim\limits_{n\rightarrow+\infty}\left(\sqrt[3]{n^3+2n}-\sqrt{n^2+1}\right)\)
c.\(\lim\limits_{n\rightarrow+\infty}\left(\sqrt[3]{n^3+n}-\sqrt[3]{n^3-2n^2}\right)\)
bài 2
a. \(\lim\limits_{n\rightarrow+\infty}\left(2n-\sqrt{n^2+3n}\right)\)
b. \(\lim\limits_{n\rightarrow+\infty}\left(\sqrt{n^2+2}-\sqrt{3n+1}\right)\)
c. \(\lim\limits_{n\rightarrow+\infty}\left(n\sin2n-3n^3\right)\)
Giới hạn của dãy nên bạn tự hiểu n tiến tới dương vô cực
1.
\(lim\frac{3n+1}{\sqrt[3]{\left(n^3+3n+1\right)^2}+n\sqrt{n^3+3n+1}+n^2}=lim\frac{3+\frac{1}{n}}{\sqrt[3]{\frac{\left(n^3+3n+1\right)^2}{n^3}}+\sqrt{n^3+3n+1}+n}=\frac{3}{\infty}=0\)
b=\(lim\left(\sqrt[3]{n^3+2n}-n+n-\sqrt{n^2+1}\right)=lim\left(\frac{2n}{\sqrt[3]{\left(n^3+2n\right)^2}+n\sqrt[3]{n^3+2n}+n^2}-\frac{1}{n+\sqrt{n^2+1}}\right)\)
\(=lim\left(\frac{2}{\sqrt[3]{\frac{\left(n^3+2n\right)^2}{n^3}}+\sqrt[3]{n^3+2n}+n}-\frac{1}{n+\sqrt{n^2+1}}\right)=0-0=0\)
c\(=lim\left(\frac{2n^2+n}{\sqrt[3]{\left(n^3+n\right)^2}+\sqrt[3]{\left(n^3+n\right)\left(n^3-2n^2\right)}+\sqrt[3]{\left(n^3-2n^2\right)^2}}\right)\)
\(=lim\left(\frac{2+\frac{1}{n}}{\sqrt[3]{\left(1+\frac{1}{n^2}\right)^2}+\sqrt[3]{\left(1+\frac{1}{n^2}\right)\left(1-\frac{2}{n}\right)}+\sqrt[3]{\left(1-\frac{2}{n}\right)^2}}\right)=\frac{2}{1+1.1+1}=\frac{2}{3}\)
2.
a\(=lim\left[n\left(2-\sqrt{1+\frac{3}{n}}\right)\right]=+\infty\left(2-1\right)=+\infty\)
\(b=lim\left[n\left(\sqrt{1+\frac{2}{n^2}}-\sqrt{\frac{3}{n}+\frac{1}{n^2}}\right)\right]=+\infty\left(1-0\right)=+\infty\)
\(c=lim\left[n^3\left(\frac{sin2n}{n^2}-3\right)\right]=+\infty\left(0-3\right)=-\infty\)
1) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\)
3) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\)
\(1,\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\left(1\right)\)
\(\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}=\dfrac{-\dfrac{n^2}{n^4}+\dfrac{2n}{n^4}+\dfrac{1}{n^4}}{\sqrt{\dfrac{3n^4}{n^4}+\dfrac{2}{n^4}}}=\dfrac{-\dfrac{1}{n^2}+\dfrac{2}{n^3}+\dfrac{1}{n^4}}{\sqrt{3+\dfrac{2}{n^4}}}\)
\(\Rightarrow\left(1\right)=\dfrac{-lim\dfrac{1}{n^2}+2lim\dfrac{1}{n^3}+lim\dfrac{1}{n^4}}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}\)
\(=\dfrac{0}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}=0\)
\(2,\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\left(2\right)\)
\(\dfrac{4n-\sqrt{16n^2+1}}{n+1}=\dfrac{\dfrac{4n}{n^2}-\sqrt{\dfrac{16n^2}{n^2}+\dfrac{1}{n^2}}}{\dfrac{n}{n^2}+\dfrac{1}{n^2}}=\dfrac{\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}}{\dfrac{1}{n}+\dfrac{1}{n^2}}\)
\(\Rightarrow\left(2\right)=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{lim\left(\dfrac{1}{n}+\dfrac{1}{n^2}\right)}=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{0}\)
Vậy giới hạn \(\left(2\right)\) không xác định.
\(3,\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\left(3\right)\)
\(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}=\dfrac{\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}}{\dfrac{2}{n}}\)
\(\Rightarrow\left(3\right)=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{2lim\dfrac{1}{n}}=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{0}\)
Vậy \(lim\left(3\right)\) không xác định.
1) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt[3]{n^3+3n^2+1}-n\right)\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{4n^2+1}-\sqrt[3]{8n^3+n}\right)\)
1:
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^3+3n^2+1-n^3}{\sqrt[3]{n^3+3n^2+1}+n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+1}{\sqrt[3]{n^3+3n^2+1}+n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(3+\dfrac{1}{n^2}\right)}{n\left(\sqrt[3]{1+\dfrac{3}{n}+\dfrac{1}{n^3}}+1\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n\cdot\left(3+\dfrac{1}{n^2}\right)}{\sqrt[3]{1+\dfrac{3}{n}+\dfrac{1}{n^3}}+1}\)
\(=\lim\limits_{n\rightarrow\infty}n\cdot\lim\limits_{n\rightarrow\infty}\dfrac{3+\dfrac{1}{n^2}}{\sqrt[3]{1+\dfrac{3}{n}+\dfrac{1}{n^3}}+1}\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{3+\dfrac{1}{n^2}}{\sqrt[3]{1+\dfrac{3}{n}+\dfrac{1}{n^3}}+1}=\dfrac{3}{2}>0\end{matrix}\right.\)
2:
\(=\lim\limits_{n\rightarrow\infty}\left(\sqrt{4n^2+1}-2n+2n-\sqrt[3]{8n^3+n}\right)\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{4n^2+1-4n^2}{\sqrt{4n^2+1}+2n}+\lim\limits_{n\rightarrow\infty}\dfrac{8n^3-8n^3-n}{4n^2+2n\cdot\sqrt[3]{8n^3+n}+\left(\sqrt[3]{8n^3+n}\right)^2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{1}{\sqrt{4n^2+1}+2n}+\lim\limits_{n\rightarrow\infty}\dfrac{-n}{4n^2+2n\cdot n\cdot\sqrt[3]{8+\dfrac{1}{n^3}}+\left(n\cdot\sqrt[3]{8+\dfrac{1}{n^3}}\right)^2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{-n}{4n^2+2n^2\cdot\sqrt[3]{8+\dfrac{1}{n^3}}+n^2\cdot\sqrt[3]{\left(8+\dfrac{1}{n^3}\right)^2}}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{-1}{4n+2n\cdot\sqrt[3]{8+\dfrac{1}{n^3}}+n\cdot\sqrt[3]{\left(8+\dfrac{1}{n^3}\right)^2}}\)
\(=0\)
1) Tính \(I=\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+2}-\sqrt{n^2-1}\right)\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+2n+2}+n\right)\)
1: \(I=\lim\limits_{n\rightarrow\infty}\dfrac{n^2+2-n^2+1}{\sqrt{n^2+2}+\sqrt{n^2-1}}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{3}{\sqrt{n^2+2}+\sqrt{n^2-1}}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{3}{n\left(\sqrt{1+\dfrac{2}{n^2}}+\sqrt{1-\dfrac{1}{n^2}}\right)}\)
=0
2: \(\lim\limits_{n\rightarrow\infty}\sqrt{n^2+2n+2}+n\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2+2n+2-n^2}{\sqrt{n^2+2n+2}-n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{2n+2}{\sqrt{n^2+2n+2}-n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{2+\dfrac{1}{n}}{\sqrt{1+\dfrac{2}{n}+\dfrac{2}{n^2}}-1}\)
\(=+\infty\)
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{6n-8}{n-1}\)
2) \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2+5n-3}{4n^3-2n+5}\)
3) \(\lim\limits_{n\rightarrow\infty}\left(-2n^5+4x^4-3n^2+4\right)\)
1) \(\lim\limits_{n\rightarrow\infty}\dfrac{6n-8}{n-1}=\lim\limits_{n\rightarrow\infty}\dfrac{2n\left(1-\dfrac{4}{n}\right)}{n\left(1-\dfrac{1}{n}\right)}=2\)
2) \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2+5n-3}{4n^3-2n+5}=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(1+\dfrac{5}{n}-\dfrac{3}{n^2}\right)}{n^3\left(4-\dfrac{2}{n^2}+\dfrac{5}{n^3}\right)}=\dfrac{1}{4n}=\infty\)
3) \(\lim\limits_{n\rightarrow\infty}\left(-2n^5+4n^4-3n^2+4\right)=\lim\limits_{n\rightarrow\infty}n^5\left(-2+\dfrac{4}{n}-\dfrac{3}{n^2}+\dfrac{4}{n^5}\right)=-2n^5=-\infty\)
1) tính giới hạn \(\lim\limits_{n\rightarrow\infty}\sqrt{n^2-1}+3n\)
2) tính giới hạn I = \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{4n^2+5}+n\right)\)
1:
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2-1-9n^2}{\sqrt{n^2-1}-3n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{-8n^2-1}{\sqrt{n^2-1}-3n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(-8-\dfrac{1}{n^2}\right)}{n\left(\sqrt{1-\dfrac{1}{n^2}}-3\right)}=\lim\limits_{n\rightarrow\infty}-\dfrac{8}{1-3}\cdot n=\lim\limits_{n\rightarrow\infty}4n=+\infty\)
2:
\(\lim\limits_{n\rightarrow\infty}\sqrt{4n^2+5}+n\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{4n^2+5-n^2}{\sqrt{4n^2+5}-n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+5}{\sqrt{4n^2+5}-n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(3+\dfrac{5}{n^2}\right)}{n\left(\sqrt{4+\dfrac{5}{n^2}}-1\right)}\)
\(=\lim\limits_{n\rightarrow\infty}n\cdot\left(\dfrac{3}{\sqrt{4}-1}\right)=+\infty\)
1) tính \(\lim\limits_{n\rightarrow\infty}\left(-2n^5+4x^4-3n^2+4\right)\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^2+2}{n-2}\)
1: \(\lim\limits_{n\rightarrow\infty}\left(-2n^5+4n^4-3n^2+4\right)\)
\(=\lim\limits_{n\rightarrow\infty}\left[n^5\left(-2+\dfrac{4}{n}-\dfrac{3}{n^3}+\dfrac{4}{n^5}\right)\right]\)
\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n^5=+\infty\\\lim\limits_{n\rightarrow\infty}\left(-2+\dfrac{4}{n}-\dfrac{3}{n^3}+\dfrac{4}{n^5}\right)=-2< 0\end{matrix}\right.\)
2: \(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^2+2}{n-2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(-3+\dfrac{2}{n^2}\right)}{n\left(1-\dfrac{2}{n}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n\left(-3+\dfrac{2}{n^2}\right)}{1-\dfrac{2}{n}}\)
\(=-\infty\) vì \(\lim\limits_{n\rightarrow\infty}n=+\infty;\lim\limits_{n\rightarrow\infty}\dfrac{-3+\dfrac{2}{n^2}}{1-\dfrac{2}{n}}=-\dfrac{3}{1}=-3< 0\)
1) tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+6n}-n\right)\)
2) tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n+1}-\sqrt{n-1}\right)\)
Lời giải:
1.
\(\lim\limits_{n\to \infty}(\sqrt{n^2+6n}-n)=\lim\limits_{n\to \infty}\frac{6n}{\sqrt{n^2+6n}+n}=\lim\limits_{n\to \infty}\frac{6}{\sqrt{1+\frac{6}{n}}+1}=\frac{6}{1+1}=3\)
2.
\(\lim\limits_{n\to \infty}(\sqrt{n+1}-\sqrt{n-1})=\lim\limits_{n\to \infty}\frac{(n+1)-(n-1)}{\sqrt{n+1}+\sqrt{n-1}}=\lim\limits_{n\to \infty}\frac{2}{\sqrt{n+1}+\sqrt{n-1}}=0\) do $\sqrt{n+1}+\sqrt{n-1}\to \infty$ khi $n\to \infty$
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^3+3n^2-1}{n^2-2n}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2-1}{-2n+3}\)
1:
\(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^3+3n^2-1}{n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^3\left(-3+\dfrac{3}{n}-\dfrac{1}{n^3}\right)}{n^2\left(1-\dfrac{2}{n}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{-3n^3}{n^2}=\lim\limits_{n\rightarrow\infty}-3n=-\infty\)
2:
\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2-1}{-2n+3}=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(3-\dfrac{1}{n^2}\right)}{n\left(-2+\dfrac{3}{n}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{-3}{2}n=-\infty\)