Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
títtt

1) tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+6n}-n\right)\)

2) tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n+1}-\sqrt{n-1}\right)\)

Akai Haruma
14 tháng 10 2023 lúc 23:56

Lời giải:
1.

\(\lim\limits_{n\to \infty}(\sqrt{n^2+6n}-n)=\lim\limits_{n\to \infty}\frac{6n}{\sqrt{n^2+6n}+n}=\lim\limits_{n\to \infty}\frac{6}{\sqrt{1+\frac{6}{n}}+1}=\frac{6}{1+1}=3\)

2.

\(\lim\limits_{n\to \infty}(\sqrt{n+1}-\sqrt{n-1})=\lim\limits_{n\to \infty}\frac{(n+1)-(n-1)}{\sqrt{n+1}+\sqrt{n-1}}=\lim\limits_{n\to \infty}\frac{2}{\sqrt{n+1}+\sqrt{n-1}}=0\) do $\sqrt{n+1}+\sqrt{n-1}\to \infty$ khi $n\to \infty$


Các câu hỏi tương tự
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
Way Back Home
Xem chi tiết