Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vy trần
Xem chi tiết
Lấp La Lấp Lánh
10 tháng 10 2021 lúc 18:12

a) \(=x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)

\(=\left(x-1\right)^2\left(x^2+x+1\right)\)

b) \(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

c) Đổi đề: \(a^2x+a^2y-7x-7y\)

\(=a^2\left(x+y\right)-7\left(x+y\right)=\left(x+y\right)\left(a^2-7\right)\)

d) \(=x^2\left(a-b\right)+y\left(a-b\right)=\left(a-b\right)\left(x^2+y\right)\)

e) \(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)

\(=\left(x+1\right)^2\left(x^2-x+1\right)\)

g) \(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

h) \(=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)

i) \(=\left(x+1\right)^2-4=\left(x+1-2\right)\left(x+1+2\right)=\left(x-1\right)\left(x+3\right)\)

Hoàng Anh Thắng
10 tháng 10 2021 lúc 18:14

a\(x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)

b)\(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

d)\(=a\left(x^2+y\right)-b\left(x^2+y\right)=\left(x^2+y\right)\left(x-b\right)\)

e)\(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)

g)\(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

h)\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\)

i)\(=\left(x-1\right)^2-4=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\)

Lê Thúy Vy
Xem chi tiết
Phạm Thị Thúy Phượng
20 tháng 5 2021 lúc 17:29

x4+x3+x+1 = x3. (x+1) + (x+1) = (x3 + 1)(x+1) = (x+1)2.(x2 - x +1) = 0

=> x + 1 = 0 => x = -1

Vì x2 - x + 1 = (x2 - 2.x .1/2 + 1/4) + 3/4 = (x - 1/2)2 + 3/4 >0 + 3/4 = 3/4

Vậy đa thức trên có nghiệm là x = -1

Khách vãng lai đã xóa
prolaze
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
22 tháng 5 2021 lúc 7:43

a) \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\)

\(=x-2x^2+2x^2-x+4\)

\(=4\). Đây là hàm hằng nên không có nghiệm.

b) \(g\left(x\right)=x\left(x-5\right)-x\left(x+2\right)+7x\)

\(=x^2-5x-x^2-2x+7x\)

\(=0\).  Đây là hàm hằng nên không có nghiệm.

c) \(H\left(x\right)=x\left(x-1\right)+1=x^2-x+1\)

Vì : \(H\left(x\right)=x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

Nen đa thức này vô nghiệm.

Cíuuuuuuuuuu
Xem chi tiết
Đặng Đình Tùng
22 tháng 8 2021 lúc 18:11

undefined

Nguyễn Lê Phước Thịnh
22 tháng 8 2021 lúc 20:05

Ta có: \(\dfrac{x^4-x^3+6x^2-x+3}{x^2-x+5}\)

\(=\dfrac{x^4-x^3+5x^2+x^2-x+5-2}{x^2-x+5}\)

\(=x^2+1-\dfrac{2}{x^2-x+5}\)

Lê Thúy Vy
Xem chi tiết
Phạm Thị Thúy Phượng
20 tháng 5 2021 lúc 17:28

Cho A(x) = 0, có:

x2 - 4x = 0

=> x (x - 4) = 0

=> x = 0 hay x - 4 = 0

=> x = 0 hay x = 4

Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)

Khách vãng lai đã xóa
Lê Thúy Vy
Xem chi tiết
Phạm Thị Thúy Phượng
20 tháng 5 2021 lúc 17:29

Cho A(x) = 0, có:

x2 - 4x = 0

=> x (x - 4) = 0

=> x = 0 hay x - 4 = 0

=> x = 0 hay x = 4

Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)

Khách vãng lai đã xóa
Nguyên Nguyên
Xem chi tiết
Nguyễn Trương Ngọc Thi
2 tháng 8 2016 lúc 14:11

a. Ta có: 5a +b +2c =0 => b = -5a -2c 

=>Q(2).Q(-1) = (4a +2b +c)(a -b +c) = (4a -10a -4c +c)(a +5a + 2c +c) 
= (-6a - 3c)(6a +3c) = - (6a +3c)^2 <= 0 với mọi a,c => Q(2).Q(-1),<_0 với 5a+b+2c=0. 

b. Q(x) = 0 với mọi x nên: 
Q(0) =0 => c =0 (1) 
Q(1) = a+b =0 (2) 
Q(-1) = a-b =0 (3) 

Từ (2) và (3) => a =b =0 kết hợp với (1) suy ra a =b= c =0.

08 - khánh ly 6c
Xem chi tiết
Hải Đăng Nguyễn
12 tháng 11 2021 lúc 10:22

.

 

๖ۣۜHả๖ۣۜI
12 tháng 11 2021 lúc 10:23

42 . (x-6)=1

16(x-6)=1

x-6=1:16

x-6=1/16

x=1/16+6

x=97/16

ngô lê vũ
12 tháng 11 2021 lúc 10:23

ohooe

Nguyễn Khánh Ngọc
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 2021 lúc 14:42

\(P=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2\)

\(P=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Rightarrow\) P luôn có ít nhất 2 ước số là \(x^2-x+1\) và \(x^2+x+1\)

Do \(x^2+x+1\ge x^2-x+1\) nên P là SNT khi và chỉ khi \(x^2-x+1=1\) đồng thời \(x^2+x+1\) là SNT

\(x^2-x+1=1\Leftrightarrow x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

- Với \(x=0\Rightarrow x^2+x+1=1\) ko phải SNT (loại)

- Với \(x=1\Rightarrow x^2+x+1=3\) là SNT (t/m)

Vậy \(x=1\)