`m) xz-yz-x^2+2xy-y^2 `
ptđttnt
Chọn đáp án đúng
\({ (x^{3}+3x^{2}y+3xy^{2}+y^{3}-z^{3}):(x+y-z) }\)
\(A. { x^{2}+y^{2}+z^{2}+2xy+xz+yz }\)
\(B. { x^{2}+y^{2}+z^{2}+2xy-xz-yz } \)
\(D. { x^{2}+y^{2}-z^{2}+2xy-xz-yz } \)
\(\left(x^3+3x^2y+3xy^2+y^3-z^3\right):\left(x+y-z\right)\\ =\left[\left(x+y\right)^3-z^3\right]:\left(x+y-z\right)\\ =\left(x+y-z\right)\left[\left(x+y\right)^2+z\left(x+y\right)+z^2\right]:\left(x+y-z\right)\\ =x^2+2xy+y^2+xz+yz+z^2\)
Vậy chọn A
\(\hept{\begin{cases}x^2+y^2+z^2+2xy-xz-yz=3\\x^2+y^2+yz-xz-2xy=-1\end{cases}}\)
Lấy 3 lần pt dưới cộng pt trên ta được :
\(4x^2+4y^2+z^2+2yz-4xz-4xy=0\)
\(\Leftrightarrow\left(2x-y-z\right)^2+3y^2=0\)
\(\Leftrightarrow\hept{\begin{cases}y=0\\2x-y-z=0\end{cases}\Rightarrow\hept{\begin{cases}y=0\\z=2x\end{cases}}}\)
\(\Rightarrow x^2+4x^2-2x^2=3\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1;z=2\\x=-1;z=-2\end{cases}}\)
\(\left\{{}\begin{matrix}x^2+y^2+z^2+2xy-xz-yz=3\\x^2+y^2+yz-xz-2xy=-1\end{matrix}\right.\)
Lấy 3 lần pt dưới cộng pt trên ta được:
\(4x^2+4y^2+z^2+2yz-4xz-4xy=0\)
\(\Leftrightarrow\left(2x-y-z\right)^2+3y^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x-y-z=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=0\\z=2x\end{matrix}\right.\)
\(\Rightarrow x^2+4x^2-2x^2=3\Rightarrow x^2=1\Rightarrow\left[{}\begin{matrix}x=1;z=2\\x=-1;z=-2\end{matrix}\right.\)
xz - yz - x^2 + 2xy - y^2
xz-yz-x2+2xy-y2
=(xz-yz)-(x2-2xy+y2)
=z(x-y)-(x-y)2
=(x-y)(z-x+y)
x ≠ y ≠ z thoả mãn 1/z+1/y+1/z=0.Tính M= yz/(x^2+2yz)+xz/(y^2+2xz)+xy/(z^2+2xy)
x mũ 2+2xy+y mũ 2-xz-yz
=\(x^2+2xy+y^2-xz-zy\)
=\(\left(x+y\right)^2-z\left(x+y\right)\)
=\(\left(x+y\right)\left(x+y-z\right)\)
\(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
A. X^3-3x^2+3x-9 B.x^2+2xy+y^2-xz-yz
\(x^3-3x^2+3x-9=x^2\left(x-3\right)+3\left(x-3\right)=\left(x-3\right)\left(x^2+3\right)\)
\(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
xz-yz-x2+2xy-y2
xz-yz-x^2 +2xy -y^2=z(x-y)-(x-y)^2=(x-y)(z-x+y)
x2-2xy+y2-yz+xz
\(x^2-2xy+y^2-yz+xz\)
\(=\left(x^2-2xy+y^2\right)+\left(xz-yz\right)\)
\(=\left(x-y\right)^2+z\left(x-y\right)\)
\(=\left(x-y+z\right)\left(x-y\right)\)