Cho hai số tự nhiên a và b, với a > b và thỏa mãn: \(3\left(a+b\right)=5\left(a-b\right)\) . Tìm thương của a và b.
a) Tìm hai số tự nhiên a,b biết BCNN(a,b) + ƯCLN(a,b) = 15
b) Tìm x nguyên thỏa mãn \(\left|x+1\right|+\left|x-2\right|+\left|x+7\right|=5x-10\)
c) Chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1
d) Tìm số nguyên n sao cho \(n^2+5n+9\) là bội của n+3
Bạn nào giúp được câu nào thì giúp mk nha
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}
`b)` - Ta thấy : `|x+1|+|x-2|+|x+7|>=0`
`-> 5x-10>=0`
`-> 5x>=10`
`-> x>=2`
`-> |x+1|=x+1;|x-2|=x-2;|x+7|=x+7`
- Vậy ta có :
`(x+1)+(x-2)+(x+7)=5x-10`
`<=> x+1+x-2+x+7=5x-10`
`<=> 3x+6=5x-10`
`<=> 3x-5x=-10-6`
`<=> -2x=-16`
`<=> x=8`
Cho hai số tự nhiên a và b, với a>b và thỏa mãn: 3(a+b)=5(a-b). Tìm thương của hai số a và b
Vì 3 (a + b) = 5 (a - b) nên 3 (a + b) và 5 (a - b) là bội chung của 3 và 5.
=> Giá trị nhỏ nhất của 2 tích 3 (a + b) và 5 (a - b) sẽ là 15.
3 (a + b) = 15
=> a + b = 15 : 3
=> a + b = 5 (1)
5 (a - b) = 15
=> a - b = 15 : 5
=> a - b = 3 (2)
Từ (1) và (2) => a = 4 và b = 1
cho hai số tự nhiên a và b với a > b và thỏa mãn : 5(a+b)=7(a+b) tìm thương của a và b ?
Lời giải:
$5(a+b)=7(a+b)$
$\Rightarrow 7(a+b)-5(a+b)=0$
$\Rightarrow 2(a+b)=0$
$\Rightarrow a+b=0$
$\Rightarrow a=-b$
Thương của $a$ và $b$: $a:b=(-b):b=-1$
CHo hai số thực a,b thỏa mãn \(1\le a\le2,1\le b\le2\). Tìm GTLN và CTNN của \(P=\left(a+\dfrac{2}{b}\right)\left(b+\dfrac{2}{a}\right)\)
Ta có: \(P=ab+\dfrac{4}{ab}+4\ge2\sqrt{ab.\dfrac{4}{ab}+4}=8\)
Dấu '=' xảy ra <=> \(\left\{{}\begin{matrix}ab=2\\1\le a,b\le2\end{matrix}\right.\)
Lại có: \(1\le a\le2,1\le b\le2\)
\(\Rightarrow1\le ab\le4\Leftrightarrow\left(ab-1\right)\left(ab-4\right)\le0\Leftrightarrow\left(ab\right)^2\le5ab-4\)
\(\Rightarrow P=\dfrac{\left(ab\right)^2+4ab+4}{ab}\le\dfrac{5ab-4+4ab+4}{ab}=9\)
Dấu '=' xảy ra <=> \(\left[{}\begin{matrix}ab=1\\ab=4\end{matrix}\right.\) và \(1\le a,b\le2\) \(\Leftrightarrow\left[{}\begin{matrix}a=b=2\\a=b=1\end{matrix}\right.\)
Vậy \(Min_P=8\Leftrightarrow ab=2;1\le a,b\le2\)
\(Max_P=9\Leftrightarrow\left[{}\begin{matrix}a=b=1\\a=b=2\end{matrix}\right.\)
tìm tất cả các cặp số tự nhiên ( a ; b ) thỏa mãn : \(\left(3^a-1\right)\left(3^a-2\right)\left(3^a-3\right)\left(3^a-4\right)\left(3^a-5\right)\left(3^a-6\right)=2016^b+20159\)
giúp mik nhé mik tick cho thank
vì (3^a-1).......(3^a-6) là 6 số tự nhiên liên tiếp nên (3^a-1)......(3^a-6) :6
=> (3^a-1)......(3^a-6) chẵn
mà 20159 lẻ
nên 2016 lẻ
=> b=0
ta có : (3^a-1) .....(3^a-6) = 1+ 20159
=> (3^a-1) ....(3^a-6)= 20160 =8:7;6;5;4;3
=> 3^a-1= 8
3^a=9
a=2
vậy ..............
tìm các số tự nhiên a,b thỏa mãn\(\left(2^a+1\right)\left(2^a+2\right)\left(2^a+3\right)+2.6^b\)
Cho a và b là hai số dương thỏa mãn ab=1. Tìm giá trị nhỏ nhất của biểu thức :
\(F=\left(2a+2b-3\right)\left(a^3+b^3\right)+\frac{7}{\left(a+b\right)^2}\)
Có \(2a+2b-3\ge2\sqrt{2a.2b}-1=1\)(vì ab=1)
\(\Rightarrow F\ge a^3+b^3+\frac{7}{\left(a+b\right)^2}\)
Tìm các số tự nhiên a;b thỏa mãn:
\(\left(2014^a+1\right)\left(2014^a+2\right)=3^b+5\)
Tìm tất cả đa thức \(P\left(x\right)\) với hệ số nguyên, sao cho: Với mỗi số nguyên tố \(p\) và \(a,b\) nguyên thỏa mãn \(ab\equiv1\left(modp\right)\) thì \(P\left(a\right).P\left(b\right)\equiv1\left(modp\right)\)