Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Uyên Nhi
Xem chi tiết
Trương Huy Hoàng
27 tháng 1 2022 lúc 21:39

Mình nghĩ đk sau biểu thức sẽ là \(0,5\le x\le3\)

Ta có: \(0,5\le x\le3\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x-1\ge0\\3-x\ge0\end{matrix}\right.\)

\(\Rightarrow\) \(\left(2x-1\right)\left(3-x\right)\ge0\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}2x-1=0\\3-x=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=3\end{matrix}\right.\left(TM\right)\)

Vậy ...

Chúc bn học tốt!

Dũng Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 3 2023 lúc 22:27

a: \(M=\dfrac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}=\dfrac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)

b: x thuộc {0;0,5}

=>x=0 hoặc x=0,5

Khi x=0 thì M=1/0+1=1

Khi x=0,5 thì M=1/0,5+1=1/1,5=2/3

=>M min=2/3 và M max=1

nguyet do
Xem chi tiết
VN in my heart
27 tháng 6 2016 lúc 8:41

\(A=\left|2x-3\right|-0,5\)

ta có \(\left|2x-3\right|\ge0\)với mọi x 

nên \(\left|2x-3\right|-0,5\ge-0,5\)(cộng cả hai vế với -0,5)

trường hợp dấu bằng xảy ra khi và chỉ khi

\(\left|2x-3\right|=0\)

=> \(2x-3=0\)

=> \(x=\frac{3}{2}\)

vậy GTNN của A = -0,5 khi vfa chỉ khi x = 3/2

\(C=2\left|x-3\right|-4\)

ta có \(\left|x-3\right|\ge0\)với mọi x

=> \(2\left|x-3\right|\ge0\) (nhân cả hai vế với 2)

=> \(2\left|x-3\right|-4\ge-4\) (cộng cả hai vế với -4)

trường hợp dấu bằng xảy ra khi và chỉ khi

\(\left|x-3\right|=0\)

=> \(x-3=0\)

=> \(x=3\)

vậy GTNN của C = -4 khi và chỉ khi x=3

Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Trọng Lễ
Xem chi tiết
Lê Việt
Xem chi tiết
Duc
8 tháng 4 2019 lúc 21:38

\(A=\left(x-2\right)\left(x+1\right)=x^2-x-2\\ =\left(x-\frac{1}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)

A min=-9/4 tại x=1/2

\(B=\left(2x-1\right)\left(x-3\right)=2x^2-7x+3\\ =2\left(x^2-\frac{7}{2}x+\frac{3}{2}\right)\\ =2\left(x^2-2x.\frac{7}{4}+\frac{49}{16}-\frac{25}{16}\right)\\ =2\left(x-\frac{7}{4}\right)^2-\frac{25}{8}\ge-\frac{25}{8}\)

B min=-25/8 tại x=7/4

manh dat
8 tháng 4 2019 lúc 21:38

support@fptplay.net

Ngoc Nguyen
Xem chi tiết
Dung Nguyễn Thị Xuân
12 tháng 8 2018 lúc 20:39

Bài 6:

a) \(x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

b) \(5x\left(x-3\right)-x+3=0\)

\(\Leftrightarrow5x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

c) \(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)

\(\Leftrightarrow3x^2-15x-2x-3x^2+2+3x=30\)

\(\Leftrightarrow-14x+2=30\)

\(\Leftrightarrow-14x=28\)

\(\Leftrightarrow x=-2\)

d) \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)

\(\Leftrightarrow2x+16=0\)

\(\Leftrightarrow2x=-16\)

\(\Leftrightarrow x=-8\)

Ngoc Nguyen
12 tháng 8 2018 lúc 19:26

Em cần gấp bây h ạ :<

Dung Nguyễn Thị Xuân
12 tháng 8 2018 lúc 20:13

Bài 1:

a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)

b) \(x^4+x^3+2x^2+x+1\)

\(=x^4+x^2+x^3+x+x^2+1\)

\(=x^2\left(x^2+1\right)+x\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+x+1\right)\)

trần thị ngọc trâm
Xem chi tiết
Lê Quỳnh Chi Phạm
Xem chi tiết
HT.Phong (9A5)
11 tháng 10 2023 lúc 18:25

1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)

\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)

\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)

\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)

\(=-8\sqrt{3}\)

2) \(A=\sqrt{12-4x}\) có nghĩa khi:

\(12-4x\ge0\)

\(\Leftrightarrow4x\le12\)

\(\Leftrightarrow x\le\dfrac{12}{4}\)

\(\Leftrightarrow x\le3\)

3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)

\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)