Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ý phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 4 2022 lúc 21:04

a: \(A=-4x^5y^3-2x^2y^3z^2-2y^4\)

b: \(B=-4x^5y^3-2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3=-4x^5y^3+\dfrac{1}{5}x^4y^3-\dfrac{8}{3}y^4\)

Duoc Nguyen
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
9 tháng 8 2017 lúc 12:54

Ói , hoa mắt chóng mặt nhức đầu ,

Phong Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 4 2023 lúc 15:43

b: =>2/5*x=2/3+4/5=22/15

=>x=11/3

c: =>2,5-0,25(2-1/2x)=0,25

=>0,25(2-0,5x)=2,25

=>2-0,5x=9

=>-0,5x=-7

=>x=14

d: =>(x-3)^2=36

=>x=9 hoặc x=-3

e: =>1/2x-3/4=0 và x+y=25

=>x=15 và y=10

xXx I love Karry Wang xX...
Xem chi tiết
Linh Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2023 lúc 22:35

a: \(A=4\cdot\dfrac{5}{2}\sqrt{x}-\dfrac{8}{3}\cdot\dfrac{3}{2}\sqrt{x}-\dfrac{4}{3x}\cdot\dfrac{3x}{8}\cdot\sqrt{x}\)

\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)

\(=\dfrac{11}{2}\sqrt{x}\)

b: \(B=\dfrac{y}{2}+\dfrac{3}{4}\cdot\left|2y-1\right|-\dfrac{3}{2}\)

\(=\dfrac{y}{2}+\dfrac{3}{4}\left(1-2y\right)-\dfrac{3}{2}\)

=1/2y+3/4-3/2y-3/2

=-y-3/4

Mai Ngọc Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 18:56

a: \(16x^3+0,25yz^3\)

\(=0,25\cdot x^3\cdot64+0,25\cdot yz^3\)

\(=0,25\left(64x^3+yz^3\right)\)

b: \(x^4-4x^3+4x^2\)

\(=x^2\cdot x^2-x^2\cdot4x+x^2\cdot4\)

\(=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\)

c: \(x^3+x^2y-xy^2-y^3\)

\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\cdot\left(x+y\right)^2\)

d: \(x^3+x^2+x+1\)

\(=x^2\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+1\right)\)

e: \(x^4-x^2+2x-1\)

\(=x^4-\left(x^2-2x+1\right)\)

\(=x^4-\left(x-1\right)^2\)

\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)

f: \(2x^2-18\)

\(=2\cdot x^2-2\cdot9\)

\(=2\left(x^2-9\right)=2\left(x-3\right)\left(x+3\right)\)

g: \(x^2+8x+7\)

\(=x^2+x+7x+7\)

\(=x\left(x+1\right)+7\cdot\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)

h: \(x^4y^4+4\)

\(=x^4y^4+4x^2y^2+4-4x^2y^2\)

\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)

i: \(x^4+4y^4\)

\(=x^4+4x^2y^2+4y^4-4x^2y^2\)

\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

k: \(x^2-2x-15\)

\(=x^2-5x+3x-15\)

\(=x\left(x-5\right)+3\left(x-5\right)=\left(x-5\right)\left(x+3\right)\)

hdgssfsdf
Xem chi tiết
Minazuki Tezu
Xem chi tiết
HT.Phong (9A5)
30 tháng 7 2023 lúc 5:57

1) \(4x^5y^2-8x^4y^2+4x^3y^2\)

\(=4x^3y^2\left(x^2-2x+1\right)\)

\(=4x^3y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)

\(=4x^3y^2\left(x-1\right)^2\)

2) \(5x^4y^2-10x^3y^2+5x^2y^2\)

\(=5x^2y^2\left(x^2-2x+1\right)\)

\(=5x^2y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)

\(=5x^2y^2\left(x-1\right)^2\)

3) \(12x^2-12xy+3y^2\)

\(=3\left(4x^2-4xy+y^2\right)\)

\(=3\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)

\(=3\left(2x-y\right)^2\)

4) \(8x^3-8x^2y+2xy^2\)

\(=2x\left(4x^2-4xy+y^2\right)\)

\(=2x\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)

\(=2x\left(2x-y\right)^2\)

5) \(20x^4y^2-20x^3y^3+5x^2y^4\)

\(=5x^2y^2\left(4x^2-4xy+y^2\right)\)

\(=5x^2y^2\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)

\(=5x^2y^2\left(2x-y\right)^2\)

Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 23:27

1: 4x^5y^2-8x^4y^2+4x^3y^2

=4x^3y^2(x^2-2x+1)

=4x^3y^2(x-1)^2

2: \(=5x^2y^2\left(x^2-2x+1\right)=5x^2y^2\left(x-1\right)^2\)

3: \(=3\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)^2\)

4: \(=2x\left(4x^2-4xy+y^2\right)=2x\left(2x-y\right)^2\)

5: \(=5x^2y^2\left(4x^2-4xy+y^2\right)=5x^2y^2\left(2x-y\right)^2\)

Trần Thị Hòa Bình
Xem chi tiết
Phuong Anh
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2021 lúc 16:34

a.

Đặt \(cos2x=t\Rightarrow t\in\left[-1;1\right]\)

Xét hàm \(y=f\left(t\right)=2t^2+2t-4\) trên \(\left[-1;1\right]\)

\(-\dfrac{b}{2a}=-\dfrac{1}{2}\in\left[-1;1\right]\)

\(f\left(-1\right)=-4\) ; \(f\left(-\dfrac{1}{2}\right)=-\dfrac{9}{2}\) ; \(f\left(1\right)=0\)

\(\Rightarrow y_{min}=-\dfrac{9}{2}\) khi \(t=-\dfrac{1}{2}\) hay \(cos2x=-\dfrac{1}{2}\)

\(y_{max}=0\) khi \(cos2x=1\)

b. Đặt \(tanx=t\Rightarrow t\in\left[-1;\sqrt{3}\right]\)

Xét hàm \(f\left(t\right)=t^2-2\sqrt{3}t-1\) trên \(\left[-1;\sqrt{3}\right]\)

\(-\dfrac{b}{2a}=\sqrt{3}\in\left[-1;\sqrt{3}\right]\)

\(f\left(-1\right)=2\sqrt{3}\) ; \(f\left(\sqrt{3}\right)=-4\)

\(y_{min}=-4\) khi \(x=\dfrac{\pi}{3}\) ; \(y_{max}=2\sqrt{3}\) khi \(x=-\dfrac{\pi}{4}\)