Những câu hỏi liên quan
Phong Phùng
Xem chi tiết
Không Tên
5 tháng 1 2019 lúc 19:15

tự vẽ hình nha:

a)  Xét tam giác vuông ADH ta có:

\(\widehat{ADH}=90^0-\widehat{DAH}\)

Xét tam giác vuông ABC ta có:

\(\widehat{DAC}=90^0-\widehat{DAB}\)

Lại có:   \(\widehat{DAH}=\widehat{DAB}\)   (vì AD là phân giác góc BAH)

suy ra:  góc ADH = góc DAC

hay tam giác ADC cân tại C

b)  bạn ktra lại đề nhé,  làm sao BK // AD đc

Bình luận (0)
Trọng Đào Minh
Xem chi tiết
nguyễn minh tâm
Xem chi tiết

a)Xét ∆ vuông ABH và ∆ADH có : 

AH chung 

BH = HD 

=> ∆ABH =∆ADH (2 cạnh góc vuông) 

b) Xét ∆ABD ta có : 

AH \(\perp\)BC 

BH = HD 

=> AH là trung trực 

=> ∆ABD cân tại A 

=> AB = AD 

ABD = ADB 

AH là phân giác BAD 

=> BAH = DAH 

Mà ADB = EDC ( đối đỉnh) 

Xét ∆ ABH có : 

ABH + BHA + BAH = 180° 

=> BAH = 90° - ABH (1)

Xét ∆ DEC có : 

DEC + ECD + CDE = 180° 

=>  EDC = 90° - EDC (2)

Mà EDC = BDA (cmt)

=> EDC = BDA = ABD (3)

Từ (1) (2) (3) => BAH = ECD (dpcm)

c) Xét ∆ABC có 

BAC + ACB + ABC = 180° 

=> ACB = 90° - ABC 

Mà ECD = ABC (cmt)

=> ECD = BCA 

Hay CB là phân giác ECA 

Bình luận (0)
Bùi Hiền Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 21:57

\(\widehat{DAC}+\widehat{DAB}=90^0\)

\(\widehat{ADC}+\widehat{HAD}=90^0\)

mà \(\widehat{BAD}=\widehat{HAD}\)

nên \(\widehat{ADC}=\widehat{DAC}\)

Bình luận (0)
Nguyễn Tuấn Minh
Xem chi tiết
Nguyễn Văn A
Xem chi tiết
%Hz@
12 tháng 6 2020 lúc 20:00

VÌ \(\Delta ABC\)CÂN TẠI A \(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

A) XÉT \(\Delta ABH\)\(\Delta ACH\)

\(AB=AC\left(CMT\right)\)

\(\widehat{B}=\widehat{C}\left(CMT\right)\)

\(\widehat{AHB}=\widehat{AHC}=90^o\)

=>\(\Delta ABH\)=\(\Delta ACH\)(ch-cgv)

b) vì\(\Delta ABH\)=\(\Delta ACH\)(cmt)

=> BH=CH ( HAI CẠNH TƯƠNG ỨNG)

=> AH LÀ TRUNG TUYẾN CỦA  \(\Delta ABC\)(ĐPCM)

C) TA CÓ \(\widehat{ABH}+\widehat{ABD}=180^o\left(kb\right)\)

                 \(\widehat{ACH}+\widehat{ACE}=180^o\left(kb\right)\)

MÀ \(\widehat{ABH}=\widehat{ACH}\left(CMT\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

XÉT \(\Delta ABD\)\(\Delta ACE\)

\(AB=AC\left(CMT\right)\)

\(\widehat{ABD}=\widehat{ACE}\left(CMT\right)\)

\(DB=CE\left(GT\right)\)

=>\(\Delta ABD\)=\(\Delta ACE\)(C-G-C)

=>AD=AE

=> \(\Delta ADE\)CÂN TẠI A

D)TỪ CHỨNG MINH TRÊN T DỄ DÀNG CM ĐƯỢC \(\Delta HDI=\Delta HEI\)

\(\Rightarrow\widehat{DHI}=\widehat{EHI}\)

MÀ HAI GÓC NÀY KỀ BÙ

\(\Rightarrow\widehat{DHI}=\widehat{EHI}=\frac{180^o}{2}=90^o\)

ta lại có \(\widehat{AHD}+\widehat{DHI}=\widehat{AHI}\)

THAY \(90^o+90^o=\widehat{AHI}\)

\(\Rightarrow\widehat{AHI}=180^o\)

=> \(\widehat{AHD}\)\(\widehat{DHI}\)KỀ BÙ

=> BA ĐIỂM A,H,I THẲNG HÀNG 

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Hằng
Xem chi tiết
Thanh Quân
28 tháng 1 2022 lúc 13:08

a) △ABC cân ⇒ \(\widehat{ABC}=\widehat{ACB}\) ⇒\(\widehat{ABM}=\widehat{ACN}\) 

Xét △ABM và △ACN có:

\(AB=AC\) ( Vì △ABC cân)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

BM=CN(gt)

Do đó : △ABC=△ACN\(\left(c.g.c\right)\)

b)Xét △vuoongAHB và △vuoongAKC có

AB=AC(vì △ABC cân)

\(\widehat{HAB}=\widehat{KAC}\) (vì △ABM=△ACN)

⇒△AHB=△AKC ( cạnh huyền góc nhọn)

⇒AH=AK

 

 

Bình luận (1)
Nguyễn Huy Tú
28 tháng 1 2022 lúc 13:11

a, Ta có : ^ABM = ^MBC - ^ABC (1) 

^ACN = ^NCB - ^ACB (2) 

Từ (1) ; (2) suy ra ^ABM = ^ACN 

Xét tam giác ABM và tam giác ANC có : 

^ABM = ^ANC ( cmt ) 

AB = AC ( gt )

MB = NC (gt)

Vậy tam giác ABM = tam  giác ACN ( c.g.c )

=> AM = AN ( 2 cạnh tương ứng )

Xét tam giác AMN có : AN = AM 

Vậy tam giác AMN là tam giác cân tại A 

=> ^M = ^N (3) 

b, Ta có : ^AMB = ^ABH ( cùng phụ ^HBM ) (4) 

^ACK = ^ANC ( cùng phụ ^KCN ) (5) 

Từ (3) ; (4) ; (5) suy ra : ^ABH = ^ACK 

=> ^HBM = ^KCN 

Xét tam giác AHB và tam giác AKC ta có : 

^ABH = ^ACK ( cmt )

AB = AC 

^AHB = ^AKC = 900

Vậy tam giác AHB = tam giác AKC ( ch - gn )

=> AH = AK ( 2 cạnh tương ứng )

c, Ta có : ^HBM = ^OBC ( đối đỉnh ) 

^KCN = ^BCO ( đối đỉnh ) 

mà ^HBM = ^KCN (cmt) 

Xét tam giác OBC có : 

^OBC = ^OCB vậy tam giác OBC cân tại O

 

Bình luận (0)
☆Châuuu~~~(๑╹ω╹๑ )☆
28 tháng 1 2022 lúc 13:18

\(Ta.có:\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\\ Mà.\widehat{ABM}+\widehat{ABC}=\widehat{ACN}+\widehat{ACB}\\ \Rightarrow\widehat{ABM}=\widehat{ACN}\\ Xét.\Delta ABM.và.\Delta ACN.có:\\ MB=MC\\ \widehat{ABM}=\widehat{ACN}\left(chứng.minh.trên\right)\\ AB=AC\left(\Delta ABC.cân\right)\\ Vậy.\Delta ABM=\Delta ACN\left(c.g.c\right)\\ \Rightarrow AM=AN\left(2.cạnh.tương.ứng\right)\\ \widehat{M}=\widehat{N}\left(2.góc.t.ứng\right)\)   

\(b,Xét.\Delta MBH.và.\Delta NCK.có:\\ \widehat{BHM}=\widehat{CKN}=90^0\\ MB=MC\\ \widehat{M}=\widehat{N}\left(cmt\right)\\ Vậy.\Delta MBH=\Delta NCK\left(cạnh.huyền,góc.nhọn\right)\\ \Rightarrow\widehat{HBM}=\widehat{KCN}\left(2.góc.t.ứng\right)\\ \Rightarrow MH=KN\left(2.cạnh.t.ứng\right)\\ Mà.AM=AH+HM;AN=AK+KN\\ \Rightarrow AH=AK\)  

\(c,Ta.có:\widehat{HBM}=\widehat{KCN}\left(chứng.minh.trên\left(cmt\right)\right)\\ Mà.\widehat{HBM}=\widehat{CBO}\left(2.góc.đối.đỉnh\right)\\ \widehat{KCN}=\widehat{BCO}\left(2.góc.đối.đỉnh\right)\\ \Rightarrow\widehat{CBO}=\widehat{BCO}\\ \Rightarrow\Delta OBC.là.\Delta cân\)

Bình luận (7)
Nguyễn Huyền Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 22:36

a: Xét ΔABM và ΔACN có

AB=AC
góc ABM=góc ACN

BM=CN

=>ΔABM=ΔACN

=>AM=AN

b: góc MBD=góc ECN

=>góc KBC=góc KCB

=>K nằm trên trung trực của BC

=>A,H,K thẳng hàng

Bình luận (0)
Pham thi thu ngan
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2021 lúc 14:48

a: Xét ΔCAE và ΔCDE có 

CA=CD

\(\widehat{ACE}=\widehat{DCE}\)

CE chung

Do đó: ΔCAE=ΔCDE

Bình luận (0)