\(\dfrac{2}{x}=\dfrac{x}{8}\)
Bài 4. Tìm x biết:
a. \(\dfrac{x}{5}=\dfrac{2}{5},\dfrac{3}{8}=\dfrac{6}{x},\dfrac{1}{9}=\dfrac{x}{27}\)
b. \(\dfrac{4}{x}=\dfrac{8}{6},\dfrac{3}{x-5}=\dfrac{-4}{x+2},\dfrac{x}{-2}=\dfrac{-8}{x}\)
a,2/5 = 2/5 ; 3/8=6/16 ; 1/9=3/27
b, 4/3=8/6 ; -1=-1 ; -4/-2=-8/4
tick cho mik nhé
a) x= 2, x= 8.(6 : 3) = 16, x= 1. (27 : 9)= 3
b) x= 6 : (8 : 4) = 3, x= -1, x= -2 . -8 = x.x => 16 = x2 => 42 = x2 => x=4
Tick cho mình đi
\(\dfrac{3}{2}X-0,2=\dfrac{3}{5}\)
\(\dfrac{1}{3}+x=\dfrac{3}{4}\)
\(1\dfrac{1}{2}x-\dfrac{2}{5}=\dfrac{1}{4}\)
\(\dfrac{11}{8}-\dfrac{3}{8}.x=\dfrac{1}{8}\)
giúp với
\(\dfrac{3}{2}x-0,2=\dfrac{3}{5}\)
\(\dfrac{3}{2}x-\dfrac{1}{5}=\dfrac{3}{5}\)
\(\dfrac{3}{2}x=\dfrac{3}{5}+\dfrac{1}{5}\)
\(\dfrac{3}{2}x=\dfrac{4}{5}\)
\(x=\dfrac{4}{5}:\dfrac{3}{2}\)
\(x=\dfrac{4}{5}\cdot\dfrac{2}{3}\)
\(x=\dfrac{8}{15}\)
\(\dfrac{1}{3}+x=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}-\dfrac{1}{3}\)
\(x=\dfrac{9}{12}-\dfrac{4}{12}\)
\(x=\dfrac{5}{12}\)
\(1\dfrac{1}{2}x-\dfrac{2}{5}=\dfrac{1}{4}\)
\(\dfrac{3}{2}x-\dfrac{2}{5}=\dfrac{1}{4}\)
\(\dfrac{3}{2}x=\dfrac{1}{4}+\dfrac{2}{5}\)
\(\dfrac{3}{2}x=\dfrac{13}{20}\)
\(x=\dfrac{13}{20}:\dfrac{3}{2}\)
\(x=\dfrac{13}{20}\cdot\dfrac{2}{3}\)
\(x=\dfrac{13}{30}\)
\(\dfrac{11}{8}-\dfrac{3}{8}\cdot x=\dfrac{1}{8}\)
\(\dfrac{3}{8}\cdot x=\dfrac{11}{8}-\dfrac{1}{8}\)
\(\dfrac{3}{8}\cdot x=\dfrac{5}{4}\)
\(x=\dfrac{5}{4}:\dfrac{3}{8}\)
\(x=\dfrac{5}{4}\cdot\dfrac{8}{3}\)
\(x=\dfrac{10}{3}\)
Giải các phương trình sau:
\(e.\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
\(f.\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
\(g.\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)
\(h.\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)
e) ĐK : \(\left\{{}\begin{matrix}1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne-1\\3x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)
\(\Leftrightarrow12\left(1+3x\right)\left(1-3x\right)=\left(1-3x\right)\left(1+3x\right)\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)
\(\Leftrightarrow12=\left(-6x\right).2\Leftrightarrow6=-6x\)
\(\Leftrightarrow x=-1\left(TM\right)\)
Tìm x biết: a) \(\dfrac{6}{-x}=\dfrac{x}{-24}\) b) \(x-\dfrac{7}{12}x+\dfrac{3}{8}x=\dfrac{5}{24}\)
c)\(\left(x-\dfrac{1}{3}\right)^2-\dfrac{1}{2}=1\dfrac{3}{4}\) d) \(\dfrac{x-3}{-2}=\dfrac{-8}{x-3}\)
e) \(\dfrac{9}{x}=\dfrac{-35}{105}\) f) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\)
a: =>6/x=x/24
=>x^2=144
=>x=12 hoặc x=-12
b: =>x(1-7/12+3/8)=5/24
=>x*19/24=5/24
=>x=5/24:19/24=5/19
c: =>(x-1/3)^2=1+3/4+1/2=9/4
=>x-1/3=3/2 hoặc x-1/3=-3/2
=>x=11/6 hoặc x=-7/6
d: =>(x-3)^2=16
=>x-3=4 hoặc x-3=-4
=>x=-1 hoặc x=7
e: =>9/x=-1/3
=>x=-27
f: =>x-1/2=0 hoặc -x/2-3=0
=>x=1/2 hoặc x=-6
1) tính
a) \(\dfrac{2}{x^2+2x}+\dfrac{2}{x^2+6x+8}+\dfrac{2}{x^2+10x+24}+\dfrac{2}{x^2+14x+48}\)
b) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(A=\dfrac{2}{x^2+2x}+\dfrac{2}{x^2+6x+8}+\dfrac{2}{x^2+10x+24}+\dfrac{2}{x^2+14x+48}\)
\(A=\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+8}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{x+8}{x\left(x+8\right)}-\dfrac{x}{\left(x+8\right)}=\dfrac{8}{x\left(x+8\right)}\)
\(B=\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{8}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{32}{1-x^{32}}\)
a) \(\dfrac{2}{7}-\dfrac{8}{9}.x=\dfrac{2}{3}\)
b) \(\dfrac{2}{5}-\dfrac{2}{5}x=\dfrac{2}{5}\)
c) \(\dfrac{2}{9}-\dfrac{7}{8}x=\dfrac{1}{3}\)
a) \(\dfrac{8}{9}x=\dfrac{2}{7}-\dfrac{2}{3}=-\dfrac{8}{21}\)
\(x=-\dfrac{8}{21}:\dfrac{8}{9}=-\dfrac{3}{7}\)
b) \(\dfrac{2}{5}x=\dfrac{2}{5}-\dfrac{2}{5}=0\)
\(x=0:\dfrac{2}{5}=0\)
c)\(\dfrac{7}{8}x=\dfrac{2}{9}-\dfrac{1}{3}=-\dfrac{1}{9}\)
\(x=-\dfrac{1}{9}:\dfrac{7}{8}=-\dfrac{8}{63}\)
a) 2/7 - 8/9 . x = 2/3
⇒ 8/9 . x = 2/7 - 2/3
⇒ 8/9 .x = -8/21
⇒ x = -8/21 : 8/9
⇒ x = -3/7.
Vậy...
b) 2/5 - 2/5x = 2/5
⇒ 2/5x = 0
⇒ x = 0.
Vậy...
Giải các phương trình sau:
a) \(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\).
b) \(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\).
c) \(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\).
d) \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\).
a) ĐKXĐ: \(x\ne1\)
Ta có: \(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)
\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow21x-2x=-2+9\)
\(\Leftrightarrow19x=7\)
\(\Leftrightarrow x=\dfrac{7}{19}\)
Vậy: \(S=\left\{\dfrac{7}{19}\right\}\)
Giải các phương trình:
a) \(\dfrac{1}{x-2}\) + 3 = \(\dfrac{3-x}{x-2}\)
b) \(\dfrac{8-x}{x-7}\) - 8 = \(\dfrac{1}{x-7}\)
c) \(\dfrac{1}{x-1}\) + \(\dfrac{2x}{x^2+x+1}\) = \(\dfrac{3x^2}{x^3-1}\)
d) \(\dfrac{y+5}{y^2-5y}\) - \(\dfrac{y-5}{2y^2+10y}\) = \(\dfrac{y+25}{2y^2-50}\)
a) ĐKXD: x ≠ 2
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)
\(\Leftrightarrow-2+x=-3\left(x-2\right)\)
\(\Leftrightarrow-2+x=-3x+6\)
\(\Leftrightarrow x+3x=6+2\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)
Vậy S = ∅
b) ĐKXĐ: x ≠ 7
\(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)
\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)
\(\Leftrightarrow-1=8\left(vô-lý\right)\)
Vậy S = ∅
P/s: Ko chắc ạ!
c) ĐKXĐ: x ≠ 1
\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)
Quy đồng và khử mẫu ta được:
\(x^2+x+1+2x\left(x-1\right)=3x^2\)
\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)
\(\Leftrightarrow-x+1=0\)
\(\Leftrightarrow x=1\) (loại vì ko t/m đk)
Vậy S = ∅
Tìm x biết: a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\) b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)
c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\) d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}.\dfrac{10}{6}\)
a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\)
Th1 : \(x-\dfrac{1}{2}=0\)
\(x=0+\dfrac{1}{2}\)
\(x=\dfrac{1}{2}\)
Th2 : \(-3-\dfrac{x}{2}=0\)
\(\dfrac{x}{2}=-3\)
\(x=\left(-3\right)\cdot2\)
\(x=-6\)
Vậy \(x\) = \(\left(\dfrac{1}{2};-6\right)\)
b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)
\(x=\dfrac{5}{8}+\dfrac{1}{8}\)
\(x=\dfrac{3}{4}\)
c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\)
\(\dfrac{3}{2}+x=-\dfrac{1}{2}-\left(-2\right)\)
\(\dfrac{3}{2}+x=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}-\dfrac{3}{2}\)
\(x=0\)
d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}\cdot\dfrac{10}{6}\)
\(x+\dfrac{1}{3}=-4\)
\(x=-4-\dfrac{1}{3}\)
\(x=-\dfrac{13}{3}\)
Tính bằng cách thuận tiện nhất:
a) 60 x (\(\dfrac{7}{12}\) + \(\dfrac{4}{15}\))
b) \(\dfrac{1}{2}\) x \(\dfrac{2}{3}\) x \(\dfrac{3}{4}\) x \(\dfrac{4}{5}\) x \(\dfrac{5}{6}\) x \(\dfrac{6}{7}\) x \(\dfrac{7}{8}\) x \(\dfrac{8}{9}\)
60x [7/12+4/15]
60x153/180
=9180/180
b 1/2x2/3x3/4x4/5x5/6x6/7x7/8x8/9=40320/4032