cho tam giác ABC vuông tại A.tia phân giác của góc ACB cắt AB tại I .Kẻ IH vuông góc BC (H thuộc BC)
a)CM CA =CH
b)gọi K là giao điểm của 2 đthẳng IH và CA .chứng minh tam giác ABC =tam giác HKC
c)gọi CI cắt BK tại N.chứng minh góc BNC =90 độ
cho tam giác ABC vuông tại A.tia phân giác của góc ACB cắt AB tại I .Kẻ IH vuông góc BC (H thuộc BC)
a)CM CA =CH
b)gọi K là giao điểm của 2 đthẳng IH và CA .chứng minh tam giác ABC =tam giác HKC
c)gọi CI cắt BK tại N.chứng minh góc BNC =90 độ
a: XétΔCAI vuông tại A và ΔCHI vuông tại H có
CI chung
\(\widehat{ACI}=\widehat{HCI}\)
Do đó: ΔCAI=ΔCHI
Suy ra: CA=CH
b: Xét ΔABC vuông tại A và ΔHKC vuông tại H có
CA=CH
\(\widehat{ACB}\) chung
DO đó: ΔABC=ΔHKC
c: Ta có: ΔCKB cân tại C
mà CN là đường phân giác
nên CN là đường cao
cho tam giác ABC vuông tại A.tia phân giác của góc ACB cắt AB tại I .Kẻ IH vuông góc BC (H thuộc BC)
a)CM CA =CH
b)gọi K là giao điểm của 2 đthẳng IH và CA .chứng minh tam giác ABC =tam giác HKC
c)gọi CI cắt BK tại N.chứng minh góc BNC =90 độ
giúp mik vs mik đang cần 🥺🥺
Cho tam giác ABC, có AB = AC. Tia phân giác của góc A cắt BC tại I.
a) Chứng minh tam giác AIB = tam giác AIC
b) Từ I kẻ IH,IK lần lượt vuông góc với AB,AC (H thuộc AB, K thuộc AC). Chứng minh IH = IK
c) Gọi M là giao điểm của HI và AC, N là giao điểm của KI và AB, P là trung điểm của MN. Chứng minh A,I,P thẳng hàng
a: Xét ΔAIB và ΔAIC có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
Do đó: ΔAIB=ΔAIC
b: ΔAIB=ΔAIC
=>IB=IC và \(\widehat{AIB}=\widehat{AIC}\)
mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)
nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)
=>AI\(\perp\)BC
b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
\(\widehat{HAI}=\widehat{KAI}\)
Do đó: ΔAHI=ΔAKI
=>IH=IK
c: Xét ΔHIN vuông tại H và ΔKIM vuông tại K có
IH=IK
\(\widehat{HIN}=\widehat{KIM}\)
Do đó: ΔHIN=ΔKIM
=>IN=IM và HN=KM
ΔAHI=ΔAKI
=>AH=AK
AH+HN=AN
AK+KM=AM
mà AH=AK và HN=KM
nên AN=AM
=>A nằm trên đường trung trực của NM(1)
IN=IM(cmt)
nên I nằm trên đường trung trực của MN(2)
PN=PM
=>P nằm trên đường trung trực của MN(3)
Từ (1),(2),(3) suy ra A,I,P thẳng hàng
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại I. Vẽ IH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của IH và AB
a. CM IA=IH
b. Cm tam giác IKC cân
c. Cho BH=6cm, HC=4 cm. Tính AB và AC
a: Xét ΔBAI vuông tại A và ΔBHI vuông tại H có
BI chung
\(\widehat{ABI}=\widehat{HBI}\)
Do đó: ΔBAI=ΔBHI
Suy ra: IA=IH
b: Xét ΔAIK vuông tại A và ΔHIC vuông tại H có
IA=IH
\(\widehat{AIK}=\widehat{HIC}\)
Do đó: ΔAIK=ΔHIC
Suy ra: IK=IC
hay ΔIKC cân tại I
c. ta có BH = AB ( cmt ) => AB = 6cm
áp dụng định lí pitago ta có
\(BC^2=AB^2+AC^2\)
\(10^2-6^2=AC^2\)
AC=\(\sqrt{64}=8cm\)
cho tam giác ABC vuông tại A có AB cắt tại I vẽ IH vuông góc với BC tại H gọi K là giao điểm của HI và AC
a) chứng minh IH=IA
b) chứng minh tam giác IKB cân
a: Xét ΔCAI vuông tại A và ΔCHI vuông tại H có
CI chung
góc ACI=góc HCI
=>ΔCAI=ΔCHI
=>IH=IA
b: Xét ΔIAK vuông tại A và ΔIHB vuông tại H có
IA=IH
góc AIK=góc HIB
=>ΔIAK=ΔIHB
=>IK=IB
=>ΔIKB cân tại I
Cho tam giác ABC vuông tại A.Vẽ tia phân giác của góc B cắt AC tại I. Qua I vẽ IH vuông góc BC (H thuộc BC).
a)Chứng minh tam giác ABI = tam giác HBI.
b) Gọi K là giao điểm của BA và HI chứng minh tam giác KBC cân
c) Trên tia đối của tia AC lấy điểm M sao cho BM = 10cm. chứng minh góc MBA > góc CBA (Vẽ hình ra giúp mik ln)
a: Xét ΔABI vuông tại A và ΔHBI vuông tại H có
BI chung
\(\widehat{ABI}=\widehat{HBI}\)
Do đó:ΔABI=ΔHBI
b: Xét ΔAIK vuông tại A và ΔHIC vuông tại H có
IA=IH
\(\widehat{AIK}=\widehat{HIC}\)
Do đó; ΔAIK=ΔHIC
Suy ra: AK=HC
mà BA=BH
nên BK=BC
=>ΔBKC cân tại B
B1: Cho tam giác ABC có góc C bằng 30 độ. Tia phân giác của góc B và đường phân giác góc ngoài tại A cắt nhau ở E. Tính số đo góc BCE
B2: Cho tam giác ABC có I là giao điểm các tia pg của góc B và góc C. Gọi D là giao điểm của AI và BC. Kẻ IH vuông góc BC (H thuộc BC) CMR: góc BIH = góc CID
B3: Cho tam giác ABC vuông tại A. Kẻ AH vuông góc BC. (H thuộc BC), các tia pg của góc HAC và AHC cắt nhau ở I. Tia phân giác của góc HAB cắt BC ở D. Cm: CI điq ua trung điểm của AD
Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )
a,chứng minh rằng IA=IB
b, Tính độ dài IC
c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK
Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE
a, chứng minh rằng BE=CD
b, chứng minh rằng góc ABE bằng góc ACD
c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:
a, AC=AK và AE vuông góc CK
b,KB=KA
c, EB > AC
d, ba đường AC,BD,KE cùng đi qua 1 điểm
Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:
a, tam giác ABE=tam giác ADC
b,góc BMC=120°
Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh
a,AK=KB
b, AD=BC
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm