a: Xét ΔBAI vuông tại A và ΔBHI vuông tại H có
BI chung
\(\widehat{ABI}=\widehat{HBI}\)
Do đó: ΔBAI=ΔBHI
Suy ra: IA=IH
b: Xét ΔAIK vuông tại A và ΔHIC vuông tại H có
IA=IH
\(\widehat{AIK}=\widehat{HIC}\)
Do đó: ΔAIK=ΔHIC
Suy ra: IK=IC
hay ΔIKC cân tại I
c. ta có BH = AB ( cmt ) => AB = 6cm
áp dụng định lí pitago ta có
\(BC^2=AB^2+AC^2\)
\(10^2-6^2=AC^2\)
AC=\(\sqrt{64}=8cm\)