Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hung Do Van
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 5 2021 lúc 13:03

Câu 1: 

const fi='dulieu.dat'

fo='thaythe.out'

var f1,f2:text;

a:array[1..100]of string;

n,d,i,vt:integer;

begin

assign(f1,fi); reset(f1);

assign(f2,fo); rewrite(f2);

n:=0;

while not eof(f1) do 

  begin

n:=n+1;

readln(f1,a[n]);

end;

for i:=1 to n do 

  begin

d:=length(a[i]);

vt:=pos('anh',a[i]);

while vt<>0 do 

  begin

delete(a[i],vt,3);

insert('em',a[i],vt);

vt:=pos('anh',a[i]);

end;

end;

for i:=1 to n do 

  writeln(f2,a[i]);

close(f1);

close(f2);

end.

Nguyễn Lê Phước Thịnh
4 tháng 5 2021 lúc 13:05

Câu 2: 

uses crt;

const fi='mang.inp'

fo='sapxep.out'

var f1,f2:text;

a:array[1..100]of integer;

i,n,tam,j:integer;

begin

clrscr;

assign(f1,fi); rewrite(f1);

assign(f2,fo); rewrite(f2);

write('Nhap n='); readln(n);

for i:=1 to n do 

  begin

write('A[',i,']='); readln(a[i]);

end;

for i:=1 to n do 

  write(f1,a[i]:4);

for i:=1 to n-1 do 

  for j:=i+1 to n do 

if a[i]>a[j] then

begin

tam:=a[i];

a[i]:=a[j];

a[j]:=tam;

end;

for i:=1 to n do 

  write(f2,a[i]:4);

close(f1);

close(f2);

end.

Takahashi Eriko Mie
Xem chi tiết
lê hồng anh thư  trưởng...
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2021 lúc 22:21

Bài 3: 

a: x=384

lê hồng anh thư  trưởng...
31 tháng 12 2021 lúc 22:24

đọc lại kĩ đi làm bài 1,2,3 mà làm chắc bài ba

Crackinh
Xem chi tiết
Hue Nguyen
18 tháng 8 2021 lúc 10:43

Vì: A, B tác dụng với Na thu số mol H2 bằng 1 nửa tổng số mol A, B.

⇒ A, B là axit đơn chức.

Mà: A, B cộng Br2 thì nBr2 < nA + nB

⇒ A hoặc B có liên đôi C = C trong phân tử.

Gọi: {nCnH2n+1COOH(A)=a(mol)nCmH2m−1COOH(B)=b(mol){nCnH2n+1COOH(A)=a(mol)nCmH2m−1COOH(B)=b(mol)

⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩mA=4,6(g)⇒a=4,614n+46mB=10,32⇒b=10,3214m+44{mA=4,6(g)⇒a=4,614n+46mB=10,32⇒b=10,3214m+44

Mà: a+b=nNaOHa+b=nNaOH

⇒4,614n+46+10,3214m+44=0,22⇒4,614n+46+10,3214m+44=0,22

⇒n=231,84−77,28m43,12m−8,96⇒n=231,84−77,28m43,12m−8,96

Xét từng TH, ta thấy m = 2 thì n = 1 và m = 3 thì n = 0

⇒{A:CH3COOHB:C2H3COOH⇒{A:CH3COOHB:C2H3COOH hoặc {A:HCOOHB:C3H5COOH

học tốt

Khách vãng lai đã xóa
Nguyễn Cương
Xem chi tiết
nguyen ngoc minh
12 tháng 6 2016 lúc 14:05

gọi tổng này là một số A

ta có  

A=7/4x(1/1x5+1/5x9+1/9x13+1/13x17+1/17x21)

A= 7/4x(1-1/5+1/5-1/9+1/9-1/13+1/13-1/17+1/17-1/21)

A= 7/4x(1-1/21)=7/4x20/21

suy ra A=5/3

soyeon_Tiểu bàng giải
12 tháng 6 2016 lúc 13:45

7/1×5 + 7/5x9 + 7/9x13 + 7/13x17 + 7/17x21

= 7/4x(4/1x5 + 4/5x9 + 4/9x13 + 4/13x17 + 4/17x21)

= 7/4x(1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + 1/17 - 1/21)

= 7/4x(1-1/20)

= 7/4x19/20

= 133/80

Nguyễn Thị Thảo Huyền
12 tháng 6 2016 lúc 13:54

đặt A=7/1X5+7/5X9+7/9X13+7/13X17+7/17X21

Ta có:4A=4x(7/1x5+7/5x9+7/9x13+7/13x17+7/17x21)

4A=7x(4/1x5+4/5x9+4/9x13+4/13x17+4/17x21)

4A=7x(1-1/5+1/5-1/9+1/9-1/13+1/13-1/17+1/17-1/21)

4A=7x(1-1/21)

4A=7x20/21

A=20/3:4

A=20/3 x 1/4

A=5/3

Vậy A=5/3

Kim Taewon
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 10 2021 lúc 23:25

Bài 4: 

b: Xét ΔABK vuông tại A có AD là đường cao ứng với cạnh huyền BK

nên \(BD\cdot BK=BA^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BD\cdot BK=BH\cdot BC\)

Lâm Vũ Thiên Phúc
Xem chi tiết
camcon
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 21:57

Bài 1: 

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2-4x^2+4x-1=0\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)

Akai Haruma
19 tháng 8 2021 lúc 22:03

Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$

PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm.

Akai Haruma
19 tháng 8 2021 lúc 22:04

Bài 2: ĐKXĐ luôn là thứ mà phải ghi ngay đầu bài làm để xác định được biểu thức có nghĩa. Tức là em ghi ĐKXĐ: $x+1\geq 0$ đầu tiên.

Sau đó mới giải ra $\sqrt{x+1}=1$

Nguyễn Tom
Xem chi tiết
Trí Tiên亗
9 tháng 10 2020 lúc 15:27

Dạng tổng quát ta càn chứng minh \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\)

Ta có \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}\)

\(=\sqrt{\frac{a^4+2a^3b+a^2b^2+2ab^3+b^4}{a^2b^2\left(a+b\right)^2}}\)

\(=\sqrt{\left(\frac{a^2+ab+b^2}{ab\left(a+b\right)}\right)^2}\)

\(=\frac{a^2+ab+b^2}{ab\left(a+b\right)}=\frac{1}{b}+\frac{b}{a\left(a+b\right)}=\frac{1}{b}+\frac{1}{a}-\frac{1}{a+b}\left(đpcm\right)\)

Áp dụng dạng trên ta được 

\(D=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{99}-\frac{1}{100}\)

\(D=100-\frac{1}{100}=\frac{9999}{100}\)

Khách vãng lai đã xóa
Kiệt Nguyễn
9 tháng 10 2020 lúc 15:37

Xét biểu thức \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\)với a > 0

\(A^2=1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}=\frac{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}=\frac{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}=\frac{\left(a^2+a+1\right)^2}{a^2\left(a+1\right)^2}=\left[\frac{a^2+a+1}{a\left(a+1\right)}\right]^2\)Do a > 0 nên A > 0 và \(A=\frac{a^2+a+1}{a\left(a+1\right)}=1+\frac{1}{a\left(a+1\right)}=1+\frac{1}{a}-\frac{1}{a+1}\)

Do đó \(D=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{99}-\frac{1}{100}\right)=99+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100-\frac{1}{100}=99,99\)

Khách vãng lai đã xóa