Hàm số y = 3x mũ 2 là đồng biến hay nghịch biến? Vì sao?
Cho hàm số y = (3 - 2 )x + 1. Hàm số là hàm đồng biến hay nghịch biến trên R? Vì sao?
Hàm số y = (3 - 2 )x + 1 có hệ số a = 3 - 2 , hệ số b = 1
Ta có: a = 3 - 2 > 0 nên hàm số đồng biến trên R
Cho hàm số y = - 1 2 x + 3
Hàm số đã cho là hàm số đồng biến hay nghịch biến? Vì sao?
Hàm số đã cho là hàm số nghịch biến trên R vì khi giá trị của biến x tăng lên mà giá trị tương ứng f(x) lại giảm đi.
Cho hàm số y = 3x + 3
a) Hàm số trên đồng biến hay nghịch biến trên R? Vì sao?
b) Vẽ đồ thị hàm số trên.
c) Tính số đo góc tạo bởi đồ thị hàm số y = 3x + 3 và trục Ox?
a: Hàm số này đồng biến vì 3>0
Hàm số \(y=\left(\sqrt{3}-2\right)x-1\) là nghịch biến vì \(\sqrt{3}-2=\sqrt{3}-\sqrt{4}< 0\)
Hàm số \(y=\left(\sqrt{3}-1\right)x-5\) là đồng biến vì \(\sqrt{3}-1>0\)
a) Hàm số \(y=\left(\sqrt{3}-2\right)x-1\) nghịch biến trên R vì \(\sqrt{3}-2< 0\)
b) Hàm số \(y=\left(\sqrt{3}-1\right)x-5\) đồng biến trên R vì \(\sqrt{3}-1>0\)
Hàm số bậc nhất y = (1 - √5)x – 1.
Hàm số trên là đồng biến hay nghịch biến trên R? Vì sao?
Ta có a = 1- √5 < 0 nên hàm số đã cho nghịch biến trên R
Hàm số y=(\(\sqrt{5}\)-2)x2 đồng biến hay nghịch biến khi x<0? vì sao?
`\sqrt{5} - 2 > 0` ngược dấu với `x` `(x < 0)`
`=>` H/s nghịch biến khi `x < 0`
Vẽ đồ thị của các hàm số \(y=3x+1\) và \(y=-2x^2\). Hãy cho biết:
a) Hàm số \(y=3x+1\) đồng biến hay nghịch biến trên R.
b) Hàm số \(y=-2x^2\) đồng biến hay nghịch biến trên mỗi khoảng: \(\left(-\infty;0\right)\) và \(\left(0;+\infty\right)\)
Vẽ đồ thị \(y = 3x + 1;y = - 2{x^2}\)
a) Trên \(\mathbb{R}\), đồ thị \(y = 3x + 1\) đi lên từ trái sang phải, như vậy hàm số \(y = 3x + 1\) đồng biến trên \(\mathbb{R}\)
b) Trên khoảng \(\left( { - \infty ;0} \right)\), đồ thị \(y = - 2{x^2}\)đi lên từ trái sang phải với mọi \(x \in \left( { - \infty ;0} \right)\) , như vậy hàm số đồng biến trên \(\left( { - \infty ;0} \right)\)
Trên khoảng \(\left( {0; + \infty } \right)\), đồ thị \(y = - 2{x^2}\)đi xuống từ trái sang phải với mọi \(x \in \left( {0; + \infty } \right)\) , như vậy hàm số nghịch biến trên \(\left( {0; + \infty } \right)\)
hàm số \(y=\left(\sqrt{2}-1\right)x-3\) đồng biến hay nghịch biến trên R? vì sao ?
Vì \(\sqrt{2}-1=\sqrt{2}-\sqrt{1}>0\)
nên hàm số \(y=\left(\sqrt{2}-1\right)x-3\) đồng biến trên R
Hàm số y =(\(\sqrt{ }\)2 -1)x-3 là đồng biến trên R. Vì Hàm số trên có tính chất :
- Đồng biên trên R với a > 0
- Nghịch biến trên R với a < 0
Bái 1: a) Tìm m để hàm số y = \(\sqrt{\dfrac{-1}{4m-2}x}+\dfrac{1}{7}\) là hàm số bậc nhất
b) Hàm số bậc nhất sau đồng biến hay nghịch biến, vì sao?
a) Hàm số: \(y=\sqrt{\dfrac{-1}{4m-2}}x+\dfrac{1}{7}\)
Là hàm số bậc nhất khi:
\(\dfrac{-1}{4m-2}>0\)
\(\Leftrightarrow4m-2< 0\)
\(\Leftrightarrow4m< 2\)
\(\Leftrightarrow m< \dfrac{4}{2}\)
\(\Leftrightarrow m< \dfrac{1}{2}\)
b) Ta có:
\(\sqrt{\dfrac{-1}{4m-2}}>0\forall m\ge\dfrac{1}{2}\)
Nên hệ số góc dương nên đây là hàm số bậc nhất đồng biến