Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Gia Hưng
Xem chi tiết
when the imposter is sus
3 tháng 10 2023 lúc 16:34

a)

\(3S=3^2+3^3+...+3^{81}\)

\(3S-S=\left(3^2+3^3+...+3^{81}\right)-\left(3+3^2+...+3^{80}\right)\)

\(2S=3^{81}-3\)

\(S=\dfrac{3^{81}-3}{2}\)

b) sai đề?

c)

\(S=\left(3^1+3^2+...+3^4\right)+\left(3^5+3^6+...+3^8\right)+...+\left(3^{77}+3^{78}+3^{79}+3^{80}\right)\)

\(S=3^1\left(1+3+9+27\right)+3^5\left(1+3+9+27\right)+...+3^{77}\left(1+3+9+27\right)\)

\(S=\left(3^1+3^5+...+3^{77}\right)\cdot40\)

Do đó S chia hết cho 40

Kiều Vũ Linh
3 tháng 10 2023 lúc 16:41

a) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰

⇒ 3S = 3² + 3³ + 3⁴ + ... + 3⁸⁰ + 3⁸¹

⇒ 2S = 3S - S

= (3² + 3³ + 3⁴ + ... + 3⁸⁰ + 3⁸¹) - (3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰)

= 3⁸¹ - 3

⇒ S = (3⁸¹ - 3)/2

b) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰

= (3 + 3² + 3³ + 3⁴ + 3⁵) + (3⁶ + 3⁷ + 3⁸ + 3⁹ + 3¹⁰) + ... + 3⁷⁶ + 3⁷⁷ + 3⁷⁸ + 3⁷⁹ + 3⁸⁰)

= 3(1 + 3 + 3² + 3³ + 3⁴) + 3⁶(1 + 3 + 3² + 3³ + 3⁴) + ... + 3⁷⁶(1 + 3 + 3² + 3³ + 3⁴)

= 3.121 + 3⁶.121 + ... + 3⁷⁶.121

= 121.(3 + 3⁶ + ... + 3⁷⁶)

= 11.11(3 + 3⁶ + ... + 3⁷⁶) ⋮ 11

Vậy S ⋮ 11

c) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰

= (3 + 3² + 3³ + 3⁴) + (3⁵ + 3⁶ + 3⁷ + 3⁸) + ... + (3⁷⁷ + 3⁷⁸ + 3⁷⁹ + 3⁸⁰)

= 3(1 + 3 + 3² + 3³) + 3⁵(1 + 3 + 3² + 3³) + ... + 3⁷⁷(1 + 3 + 3² + 3³)

= 3.40 + 3⁵.40 + ... + 3⁷⁷.40

= 40(3 + 3⁵ + ... + 3⁷⁷) ⋮ 40

Vậy S ⋮ 40

nguyễn trần quỳnh trâm
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 11 2021 lúc 21:57

\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+...+3^{58}\right)\\ A=13\left(3+...+3^{58}\right)⋮13\)

\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ M=\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ M=\left(2+2^2+2^3+2^4\right)\left(1+...+2^{16}\right)\\ M=30\left(1+...+2^{16}\right)⋮5\)

nguyễn trần quỳnh trâm
Xem chi tiết
nguyễn trần quỳnh trâm
Xem chi tiết
Nguyễn Thị Quỳnh Chi
Xem chi tiết
Huỳnh Quang Sang
27 tháng 12 2018 lúc 21:03

6x + 11y chia hết cho 31

=> 6x + 11y + 31y chia hết cho 31 vì 31y chia hết cho 31

=> 6x + 42y chia hết cho 31

=> 6(x + 7y) chia hết cho 31

=> x + 7y chia hết cho 31 vì 6 và 31 là hai số nguyên tố cùng nhau

=> đpcm

Gia Hân
Xem chi tiết

\(S=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\\ =\left(3+3^2+3^3\right)+3^3.\left(3+3^2+3^3\right)+3^6.\left(3+3^2+3^3\right)\\ =39+3^3.39+3^6.39\\ =-39.\left(-1-3^3-3^6\right)⋮\left(-39\right)\)

Nguyễn Minh Dương
30 tháng 6 2023 lúc 16:21

S = 3 + 32 + 33 + 34 + 35 + 3+ 37 + 38 + 39

S = ( 3 + 32 + 33 ) +3+ 35 + 36 + 37 + 38 + 3

S = 39 + 34 + 35 + 36 + 37 + 38 + 39

Vì 39 ⋮ -39

<=> S ⋮ -39

Le trong hieu
Xem chi tiết
Phan Nguyên Anh
Xem chi tiết
Nguyễn Đức Trí
10 tháng 8 2023 lúc 8:26

\(A=3+3^2+3^3+...+3^{60}\)

\(A=3\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\)

\(A=3.40+...+3^{57}.40\)

\(A=40\left(3+3^5...+3^{57}\right)\)

mà \(40⋮5\)

\(\Rightarrow A⋮5\left(dpcm\right)\)

Phan Nguyên Anh
10 tháng 8 2023 lúc 8:26

thank bạn nha 

 

 

 

 

 

 

 

\(3+3^2+3^3+...+3^{60}\\ =\left(3+3^2+3^3+3^4\right)=\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{57}+3^{58}+3^{59}+3^{60}\right)\\ =3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\\ =3.40+3^5.40+...+3^{57}.40\\ =\left(3+3^5+...+3^{57}\right).40⋮5\left(Vì:40⋮5\right)\)

Đặng Hoài Thương
Xem chi tiết
Nguyễn Tuấn Tú
16 tháng 10 2023 lúc 17:06

a) \(A=7^{13}+7^{14}+7^{15}+7^{16}+...+7^{100}\)

\(A=\left(7^{13}+7^{14}\right)+\left(7^{15}+7^{16}\right)+...+\left(7^{99}+7^{100}\right)\)

\(A=7^{13}\left(1+7\right)+7^{15}\left(1+7\right)+...+7^{99}\left(1+7\right)\)

\(A=7^{13}.8+7^{15}.8+...+7^{99}.8\)

\(A=8.\left(7^{13}+7^{15}+...+7^{99}\right)\)

⇒ \(A⋮8\)

Vậy A chia hết cho 8 (đpcm)

Kiều Vũ Linh
16 tháng 10 2023 lúc 17:08

a) A = 7¹³ + 7¹⁴ + 7¹⁵ + 7¹⁶ + ... + 7⁹⁹ + 7¹⁰⁰

= (7¹³ + 7¹⁴) + (7¹⁵ + 7¹⁶) + ... + (7⁹⁹ + 7¹⁰⁰)

= 7¹³.(1 + 7) + 7¹⁵.(1 + 7) + ... + 7⁹⁹.(1 + 7)

= 7¹³.8 + 7¹⁵.8 + ... + 7⁹⁹.8

= 8.(7¹³ + 7¹⁵ + ... + 7⁹⁹) ⋮ 8

Vậy A ⋮ 8

b) B = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰⁰

= 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + 2⁷ + 2⁸ + ... + 2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + 2¹⁹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁹⁶.30

= 30.(1 + 2⁴ + ... + 2⁹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁹⁶) ⋮ 5

Vậy B ⋮ 5

Nguyễn Tuấn Tú
16 tháng 10 2023 lúc 17:14

\(B=2+2^2+2^3+...+2^{200}\)

\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{199}+2^{200}\right)\)

\(B=1.\left(2+2^2\right)+2^2.\left(2^{ }+2^2\right)+...+2^{198}.\left(2+2^2\right)\)

\(B=1.5+2^2.5+...+2^{198}.5\)

\(B⋮5\)

Vậy B chia hết cho 5 (đpcm)

\(B=5.\left(1+2^2+...+2^{198}\right)\)