Cho biểu thức A=31+32+34+….+360.chứng tỏ rằng A chia hết cho 40.
nhanh giúp mk với ạ cảm ơn
Cho Biểu Thức :S = 31 +32 + 33 +...................+ 379 + 380
a) tính s b) chứng tỏ S: 11 c) chứng tỏ S :40
cảm ơn ạ
a)
\(3S=3^2+3^3+...+3^{81}\)
\(3S-S=\left(3^2+3^3+...+3^{81}\right)-\left(3+3^2+...+3^{80}\right)\)
\(2S=3^{81}-3\)
\(S=\dfrac{3^{81}-3}{2}\)
b) sai đề?
c)
\(S=\left(3^1+3^2+...+3^4\right)+\left(3^5+3^6+...+3^8\right)+...+\left(3^{77}+3^{78}+3^{79}+3^{80}\right)\)
\(S=3^1\left(1+3+9+27\right)+3^5\left(1+3+9+27\right)+...+3^{77}\left(1+3+9+27\right)\)
\(S=\left(3^1+3^5+...+3^{77}\right)\cdot40\)
Do đó S chia hết cho 40
a) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰
⇒ 3S = 3² + 3³ + 3⁴ + ... + 3⁸⁰ + 3⁸¹
⇒ 2S = 3S - S
= (3² + 3³ + 3⁴ + ... + 3⁸⁰ + 3⁸¹) - (3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰)
= 3⁸¹ - 3
⇒ S = (3⁸¹ - 3)/2
b) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰
= (3 + 3² + 3³ + 3⁴ + 3⁵) + (3⁶ + 3⁷ + 3⁸ + 3⁹ + 3¹⁰) + ... + 3⁷⁶ + 3⁷⁷ + 3⁷⁸ + 3⁷⁹ + 3⁸⁰)
= 3(1 + 3 + 3² + 3³ + 3⁴) + 3⁶(1 + 3 + 3² + 3³ + 3⁴) + ... + 3⁷⁶(1 + 3 + 3² + 3³ + 3⁴)
= 3.121 + 3⁶.121 + ... + 3⁷⁶.121
= 121.(3 + 3⁶ + ... + 3⁷⁶)
= 11.11(3 + 3⁶ + ... + 3⁷⁶) ⋮ 11
Vậy S ⋮ 11
c) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰
= (3 + 3² + 3³ + 3⁴) + (3⁵ + 3⁶ + 3⁷ + 3⁸) + ... + (3⁷⁷ + 3⁷⁸ + 3⁷⁹ + 3⁸⁰)
= 3(1 + 3 + 3² + 3³) + 3⁵(1 + 3 + 3² + 3³) + ... + 3⁷⁷(1 + 3 + 3² + 3³)
= 3.40 + 3⁵.40 + ... + 3⁷⁷.40
= 40(3 + 3⁵ + ... + 3⁷⁷) ⋮ 40
Vậy S ⋮ 40
a)Chứng tỏ: A = 31 + 32 + 33 + … + 360 chia hết cho 13
b)Cho M = 2 + 22 + 23 + … + 220 . Chứng tỏ rằng M
5
đăng 3 lần rồi giúp mik ik
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+...+3^{58}\right)\\ A=13\left(3+...+3^{58}\right)⋮13\)
\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ M=\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ M=\left(2+2^2+2^3+2^4\right)\left(1+...+2^{16}\right)\\ M=30\left(1+...+2^{16}\right)⋮5\)
a)Chứng tỏ: A = 31 + 32 + 33 + … + 360 chia hết cho 13
b)Cho M = 2 + 22 + 23 + … + 220 . Chứng tỏ rằng M 5
hãy giúp mik ik mik cần gắp
a)Chứng tỏ: A = 31 + 32 + 33 + … + 360 chia hết cho 13
b)Cho M = 2 + 22 + 23 + … + 220 . Chứng tỏ rằng M 5
hãy giúp mik và chỉ cách trình bày cho mik nhen
Chứng tỏ rằng nếu : 6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31
Giúp mk với !! Ai nhanh và đúng mk tick, mk đang càn gấp lắm ạ !
6x + 11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 vì 31y chia hết cho 31
=> 6x + 42y chia hết cho 31
=> 6(x + 7y) chia hết cho 31
=> x + 7y chia hết cho 31 vì 6 và 31 là hai số nguyên tố cùng nhau
=> đpcm
Chứng minh rằng: S= 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 chia hết cho -39
Giúp em với ạ, em cảm ơn!
\(S=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\\ =\left(3+3^2+3^3\right)+3^3.\left(3+3^2+3^3\right)+3^6.\left(3+3^2+3^3\right)\\ =39+3^3.39+3^6.39\\ =-39.\left(-1-3^3-3^6\right)⋮\left(-39\right)\)
S = 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39
S = ( 3 + 32 + 33 ) +34 + 35 + 36 + 37 + 38 + 39
S = 39 + 34 + 35 + 36 + 37 + 38 + 39
Vì 39 ⋮ -39
<=> S ⋮ -39
Cho biểu thức: A = 1 + 32 + 34 .....348 + 350 chứng tỏ rằng 8.A chia hết cho cả 2 và 5.
Cho A = 3+32+33+......+360. Chứng tỏ rằng:
A chia hết cho 5
Các bạn giúp tớ nhé!
\(A=3+3^2+3^3+...+3^{60}\)
\(A=3\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\)
\(A=3.40+...+3^{57}.40\)
\(A=40\left(3+3^5...+3^{57}\right)\)
mà \(40⋮5\)
\(\Rightarrow A⋮5\left(dpcm\right)\)
\(3+3^2+3^3+...+3^{60}\\ =\left(3+3^2+3^3+3^4\right)=\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{57}+3^{58}+3^{59}+3^{60}\right)\\ =3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\\ =3.40+3^5.40+...+3^{57}.40\\ =\left(3+3^5+...+3^{57}\right).40⋮5\left(Vì:40⋮5\right)\)
Chứng minh:
a). Biểu thức: A = 7¹³ + 7¹⁴ + 7¹⁵ + 7¹⁶ + ... + 7¹⁰⁰ chia hết cho 8
b) Biểu thức B = 2 + 2² + 2³ + … + 2²⁰⁰
chia hết cho 5.
(Giúp mình với ạ, mình cảm ơn)
a) \(A=7^{13}+7^{14}+7^{15}+7^{16}+...+7^{100}\)
\(A=\left(7^{13}+7^{14}\right)+\left(7^{15}+7^{16}\right)+...+\left(7^{99}+7^{100}\right)\)
\(A=7^{13}\left(1+7\right)+7^{15}\left(1+7\right)+...+7^{99}\left(1+7\right)\)
\(A=7^{13}.8+7^{15}.8+...+7^{99}.8\)
\(A=8.\left(7^{13}+7^{15}+...+7^{99}\right)\)
⇒ \(A⋮8\)
Vậy A chia hết cho 8 (đpcm)
a) A = 7¹³ + 7¹⁴ + 7¹⁵ + 7¹⁶ + ... + 7⁹⁹ + 7¹⁰⁰
= (7¹³ + 7¹⁴) + (7¹⁵ + 7¹⁶) + ... + (7⁹⁹ + 7¹⁰⁰)
= 7¹³.(1 + 7) + 7¹⁵.(1 + 7) + ... + 7⁹⁹.(1 + 7)
= 7¹³.8 + 7¹⁵.8 + ... + 7⁹⁹.8
= 8.(7¹³ + 7¹⁵ + ... + 7⁹⁹) ⋮ 8
Vậy A ⋮ 8
b) B = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰⁰
= 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + 2⁷ + 2⁸ + ... + 2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + 2¹⁹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁹⁶.30
= 30.(1 + 2⁴ + ... + 2⁹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁹⁶) ⋮ 5
Vậy B ⋮ 5
\(B=2+2^2+2^3+...+2^{200}\)
\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{199}+2^{200}\right)\)
\(B=1.\left(2+2^2\right)+2^2.\left(2^{ }+2^2\right)+...+2^{198}.\left(2+2^2\right)\)
\(B=1.5+2^2.5+...+2^{198}.5\)
⇒\(B⋮5\)
Vậy B chia hết cho 5 (đpcm)
\(B=5.\left(1+2^2+...+2^{198}\right)\)