Tìm GTLN của D=x-/x/
D = (\sqrt(x)-x-7)/(\sqrt(x)+1)
Tìm GTLN của D (max D)
\(D=\dfrac{\sqrt{x}-x-7}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-9}{\sqrt{x}+1}=1-\sqrt{x}+1-\dfrac{9}{\sqrt{x}+1}\)
\(=3-\left[\left(\sqrt{x}+1\right)+\dfrac{9}{\sqrt{x}+1}\right]\)\(\le3-2\sqrt{\left(\sqrt{x}+1\right).\dfrac{9}{\sqrt{x}+1}}\) ( BĐT AM-GM)
\(\Leftrightarrow D\le-3\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=\dfrac{9}{\sqrt{x}+1}\Leftrightarrow x=4\)
Vậy \(max_D=-3\)
Tìm GTLN của D = (5 − x)(x − 7) + 10.
Tìm GTNN hoặc GTLN của:
a) A=|2x-1|-4 (GTLN)
b) B = 1,5-|2-x| (GTLN)
c) C = |x-3|(GTNN)
d)D = 10-4|x-2|(GTLN)
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
Tìm GTLN của biểu thức D=|x-2022|+|x-1|
TH1: x<1
=>x-1<0; x-2022<0
=>D=1-x+2022-x=-2x+2023
Vì hàm số D=-2x+2023 là hàm số nghịch biến trên R
nên D lớn nhất khi x nhỏ nhất
Khi x<1 thì x không có giá trị nhỏ nhất
=>D không có giá trị lớn nhất
TH2: 1<=x<=2022
=>x-1>=0; x-2022<=0
=>D=x-1+2022-x=2021
=>\(D_{\max}=2021\) khi 1<=x<=2022
TH3: x>2022
=>x-1>0; x-2022>=0
=>D=x-1+x-2022=2x-2023
Vì hàm số D=2x-2023 là hàm số đồng biến trên R
nên D lớn nhất khi x lớn nhất
Khi x>=2022 thì x không có giá trị lớn nhất
=>D không có giá trị lớn nhất
Vậy: \(D_{\max}=2021\) khi 1<=x<=2022
Tìm GTLN của biểu thức D=|x-2022|+|x-1|
Sửa đề: Tìm GTNN
D = |x - 2022| + |x - 1|
= |x - 2022| + |1 - x|
≥ |x - 2022 + 1 - x| = 2021
Vậy GTNN của D là 2021
Tìm GTLN của biểu thức D=|x-2022|+|x-1|
Sửa đề: Tìm GTNN
D = |x - 2022| + |x - 1|
= |x - 2022| + |1 - x|
≥ |x - 2022 + 1 - x| = 2021
Vậy GTNN của D là 2021
a, Cho `0<x<25`
Tìm GTLN:`(80-2x)(50-2x)x`
b, `0<x<2`. Tìm GTLN: `5x(2-x)`
c, `x≥2`. Tìm GTLN: `x + 1/x`
d, Cho `x,y>0, x+y≤1`. TÌm GTNN: `x + y + 1/x + 1/y`
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
c. Bạn kiểm tra lại đề nhé.
b. \(5x\left(2-x\right)=-5x\left(x-2\right)=-5\left(x^2-2x\right)=-5\left(x^2-2x+1-1\right)=-5\left(x-1\right)^2+5\le5\)-Dấu bằng xảy ra \(\Leftrightarrow x=1\)
a.
\(\left(80-2x\right)\left(50-2x\right)x=\dfrac{2}{3}\left(40-x\right)\left(50-2x\right)3x\le\dfrac{2}{3}\left(\dfrac{40-x+50-2x+3x}{3}\right)^3=18000\)
Dấu "=" xảy ra khi \(40-x=50-2x=3x\Leftrightarrow x=10\)
b.
\(5x\left(2-x\right)=5.x\left(2-x\right)\le\dfrac{5}{4}\left(x+2-x\right)^2=5\)
Dấu "=" xảy ra khi \(x=2-x\Rightarrow x=1\)
c.
Biểu thức này chỉ có min, ko có max
d.
\(x+y\le1\Rightarrow-\left(x+y\right)\ge-1\)
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}=\left(4x+\dfrac{1}{x}\right)+\left(4y+\dfrac{1}{y}\right)-3\left(x+y\right)\ge2\sqrt{\dfrac{4x}{x}}+2\sqrt{\dfrac{4y}{y}}-3.1=5\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Tìm GTLN, GTNN của các biểu thức sau và tìm điều kiện của x để biểu thức có GTLN, GTNN:
C=/x+1/+/x+2/+/x+3/+/x+4/+/x+5/
D=/x-1/+/x-2/+/x-3/+....+ /x-2017/
Giúp mk nha !
Tìm GTLN của D= |x|+6/|x|+5 Giúp mik nhé