Giải pt \(\left(\sqrt{x+3}+\sqrt{6-x}\right)\left(6\sqrt{2x+6}-2x-13\right)=6\sqrt{2}\)
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
giải pt :a,\(\left(2x+6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
giải bất phương trình \(\left(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\right)\left(x^6-x^3+x^2-x+1\right)\ge0\)
Do \(x^6-x^3+x^2-x+1=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\) ; \(\forall x\) nên BPT tương đương:
\(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\ge0\)
\(\Leftrightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\le\sqrt{26}\) (1)
Ta có:
\(VT=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\) (2)
\(\Rightarrow\left(1\right);\left(2\right)\Rightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}=\sqrt{26}\)
Dấu "=" xảy ra khi và chỉ khi \(2\left(2x-1\right)=3\left(2-2x\right)\Leftrightarrow x=\dfrac{4}{5}\)
Vậy BPT có nghiệm duy nhất \(x=\dfrac{4}{5}\)
giải pt :
a, \(\left(x^2+2\right)^2+4\left(x+1\right)^3+\sqrt{x^2+2x+5}=\left(2x-1\right)^2+2\)
b, \(\sqrt{4x^2+x+6}=4x-2+7\sqrt{x+1}\)
c, \(\sqrt{x-2}-\sqrt{x+2}=2\sqrt{x^2-4}-2x+2\)
giải pt :
a, \(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\)
b, \(\left(x^2+2\right)^2+4\left(x+1\right)^3+\sqrt{x^2+2x+5}=\left(2x-1\right)^2+2\)
c, \(\sqrt{4x^2+x+6}=4x-2+7\sqrt{x+1}\)
d, \(\sqrt{x-2}-\sqrt{x+2}=2\sqrt{x^2-4}-2x+2\)
Giải pt, bất pt
a) \(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}=2x\right)\)
b) \(\left(x^2-3x+2\right)\left(x^2-12x+32\right)\le4x^2\)
c) \(2\sqrt{3x+7}-5\sqrt[3]{x-6}=4\)
Giải hệ pt
1/\(\left\{{}\begin{matrix}4x\sqrt{y+1}+8x=\left(4x^2-4x-3\right)\sqrt{x+1}\\\dfrac{x}{x+1}+x^2=\left(y+2\right)\sqrt{\left(x+1\right)\left(y+1\right)}\end{matrix}\right.\)
2/\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)
4/\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)
m.n giúp e mấy bài này vs ạ!!
Giải các PT sau:
a) \(\sqrt{3+x}+\sqrt{6-x}-\sqrt{\left(3+x\right)\left(6-x\right)}=3\)
b) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
Mọi người giúp mình nha
Đặt \(\hept{\begin{cases}\sqrt{3+x}=a\\\sqrt{6-x}=b\end{cases}}\)
Ta có a2 + b2 = 9
a + b - ab = 3
Tới đâu thì bài toán đơn giản rồi nên bạn tự làm nha
B1:Giải bpt sau:\(\left(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\right).\left(x^6-x^3+x^2-x+1\right)\ge0\)
B2:Cho a;b;c>0 thỏa mãn \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).CMR \(3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)
B3:giải pt nghiệm nguyên sau : \(6\left(y^2-1\right)+3\left(x^2+y^2z^2\right)+2\left(z^2-9x\right)=0\)
bài 2
ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)
\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có;
\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)
\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
câu 1 dễ mà liên hợp đi x=\(\frac{4}{5}\)
câu hình
ad bđt svacso
\(\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_b}\ge\frac{9}{h_a+2h_b}\)
tt vs mấy cái còn lại rồi dùng S=p.r