Tính giá trị phân thức M = (4ab + a ^ 2 + 4b ^ 2)/(ab) với 2a - 20b = 0 và a,b≠0
Tính giá trị của biểu thức
A = \(a^4b^4:\left(-a^3b^2\right)+2a^4b^3:a^2b^2-3a^3b^2:ab^2\)tại a = 0; b = 0
cho a,b >0 thỏa mãn:a2+2b=4b2-a
tính giá trị biểu thức M=a2+5a+4b2-10b-4ab+2018
cho a,b>0 và 6a^2+ab=35b^2.tính giá trị M=\(\frac{3a^2+5b^2+ab}{2a^2-3ab+4b^2}\)
Từ \(6a^2+ab=35b^2\)\(\Rightarrow6a^2+ab-35b^2=0\)
\(\Rightarrow6a^2+15ab-14ab-35b^2=0\)
\(\Rightarrow3a\left(2a+5b\right)-7b\left(2a+5b\right)=0\)
\(\Rightarrow\left(3a-7b\right)\left(2a+5b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3a=7b\\2a=-5b\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}a=\frac{7b}{3}\\a=-\frac{5b}{2}\end{cases}}\)
Thay vao tinh....
cho a,b>0 và 6a^2+ab=25b^2.tính giá trị của M=\(\frac{3a^2+5b^2+ab}{2a^2-3ab+4b^2}\)
Ta có : \(6a^2+ab=25b^2\)
Vì a,b > 0 nên chia cả hai vế cho a2 được : \(6+\frac{b}{a}=\frac{25b^2}{a^2}\)
Đặt \(t=\frac{b}{a}\) thì ta có \(25t^2-t-6=0\Leftrightarrow\orbr{\begin{cases}t=\frac{1+\sqrt{601}}{50}\\t=\frac{1-\sqrt{601}}{50}\end{cases}}\)
Tới đây bạn suy ra tỉ số giữa a và b rồi thay vào tính M nhé!
cho a^2+b^2-4b-2a+5=0 .Tính giá trị biểu thức a^27+b^2+2022
\(a^2-2a+1+b^2-4b+4=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2=0\)
=>a=1 và b=2
\(a^{27}+b^2+2022=1^{27}+2^2+2022=2022+4+1=2027\)
Cho a>b>0 và a2+3b2=4ab. Tính giá trị phân thức :
A=\(\frac{a+11b}{2a+b}\)
Ai lm xong trc, t tick !!
a2 + 3b2 = 4ab
=> a2 + b2 + 2b2 - 2ab - 2ab = 0
=> (a2 - 2ab + b2) - 2b(a - b) = 0
=> (a - b)2 - 2b(a - b) = 0
=> (a - b)(a - b - 2b) = 0
=> (a - b)(a - 3b) = 0
*Xảy ra 2 trường hợp: a - b = 0 => a = b (vô lí vì a > b > 0)
và a - 3b = 0 => a = 3b
Vậy A = ...................Bạn thay a = 3b vào A là xong
cho a>b>0 và a^2 - 6b^2 = -ab. tính giá trị biểu thức
M= 2ab/2a^2 - 3b^2 ( kết quả dưới dạng phân số tối giản)
làm ơn giúp tớ với!!!
cho a, b>0 và \(6a^2+ab=35b^2..\)tính giá trị của M=\(\frac{3a^2+5b^2+ab}{2a^2-3ab+4b^2}...???\)
Thế vào ta được
\(M=\frac{3.\frac{7^2}{3^2}b^2+5b^2+\frac{7}{3}b^2}{2.\frac{7^2}{3^2}b^2+4b^2-3.\frac{7}{3}b^2}\)
\(=\frac{\frac{49+15+7}{3}}{\frac{98+36-63}{9}}=\frac{\frac{71}{3}}{\frac{71}{9}}=3\)
Ta có: \(6a^2+ab=35b^2\)
\(\Leftrightarrow\left(6a^2-14ab\right)+\left(15ab-35b^2\right)=0\)
\(\Leftrightarrow\left(3a-7b\right)\left(2a+5b\right)=0\)
\(\Rightarrow3a=7b\Rightarrow a=\frac{7b}{3}\)
\(\Rightarrow M=3\)
Cái này bạn thế số vô là xong mà. Thế số thì mình không giúp đâu vì nó đơn giản mà tốn thời gian. Bạn tự thế nha
Bài 6:Cho các số a,b,c khác 0 thỏa mãn
2a-2b+9c=9 Tính giá trị của M=a+3c/a+4b-3c
a-2b+6c=5
Bài 7 Cho a,b>0 thỏa mãn a+b=3.Tìm giá trị nhỏ nhất của biểu thức T=a^2+4/a+b^2/b+3