Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
subjects
Xem chi tiết
Nguyễn Bá Minh Nhật
26 tháng 12 2022 lúc 14:50

đợi tý

when the imposter is sus
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Dương đình minh
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Quynh Truong
Xem chi tiết
Vy Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 23:23

a: Ta có: \(x^2=3-2\sqrt{2}\)

nên \(x=\sqrt{2}-1\)

Thay \(x=\sqrt{2}-1\) vào A, ta được:

\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)

Dễ thương khi đào mương
Xem chi tiết
Thùy Dương
31 tháng 3 2017 lúc 6:55

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

Qasalt
Xem chi tiết
Iron Fe
Xem chi tiết
HT.Phong (9A5)
17 tháng 9 2023 lúc 9:37

a) Ta có: 

\(Q=\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\) Q có nghĩa khi:

\(\left(1-3x\right)\left(x+\dfrac{1}{2}\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1-3x\ge0\\x+\dfrac{1}{2}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}1-3x\le0\\x+\dfrac{1}{2}\le\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x\le1\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}3x\ge1\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{2}\le x\le\dfrac{1}{3}\\x\in\varnothing\end{matrix}\right.\)

\(\Leftrightarrow-\dfrac{1}{2}\le x\le\dfrac{1}{3}\)

b) Ta có: \(Q=\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\)

\(Q=\sqrt{x+\dfrac{1}{2}-3x^2-\dfrac{3}{2}x}\)

\(Q=\sqrt{-\left(3x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)}\)

\(Q=\sqrt{-3\left(x^2+\dfrac{1}{6}x-\dfrac{1}{6}\right)}\)

\(Q=\sqrt{-3\left(x^2+2\cdot\dfrac{1}{12}\cdot x+\dfrac{1}{144}-\dfrac{25}{144}\right)}\)

\(Q=\sqrt{-3\left(x+\dfrac{1}{12}\right)^2+\dfrac{25}{144}}\)

Mà: \(Q=\sqrt{-3\left(x+\dfrac{1}{12}\right)^2+\dfrac{25}{144}}\le\sqrt{\dfrac{25}{144}}=\dfrac{5}{12}\)

Dấu "=" xảy ra khi:

\(\Leftrightarrow-3\left(x+\dfrac{1}{12}\right)^2=0\)

\(\Leftrightarrow x+\dfrac{1}{12}=0\)

\(\Leftrightarrow x=-\dfrac{1}{12}\)

Vậy: \(Q_{max}=\dfrac{5}{12}.khi.x=-\dfrac{1}{12}\)

Hùng Chu
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
20 tháng 6 2021 lúc 9:44

a) đK: \(x\ne0;2\)

B = \(\dfrac{3x-4}{x\left(x-2\right)}.\dfrac{x\left(x-2\right)}{x^2-4-x^2}=\dfrac{3x-4}{-4}=\dfrac{4-3x}{4}\) \(\dfrac{x-4+2x}{x\left(x-2\right)}:\dfrac{\left(x-2\right)\left(x+2\right)-x^2}{x\left(x-2\right)}\)

\(\dfrac{3x-4}{x\left(x-2\right)}.\dfrac{x\left(x-2\right)}{x^2-4-x^2}=\dfrac{4-3x}{4}\)

b) Thay x = -2 (TMDK) vào B, ta có:

\(B=\dfrac{4-3.\left(-2\right)}{4}=\dfrac{4+6}{4}=\dfrac{5}{2}\)

c) Để \(\left|B\right|-2x=5\)

<=> \(\left|\dfrac{4-3x}{4}\right|-2x=5\)

TH1: \(x\le\dfrac{4}{3}\)

<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{4-3x}{4}\)

PT <=> \(\dfrac{4-3x}{4}-2x=5\)

<=> \(\dfrac{4-3x-8x}{4}=5\)

<=> \(4-11x=20\)

<=> x = \(\dfrac{-16}{11}\) (Tm)

TH2: \(x>\dfrac{4}{3}\)

<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{3x-4}{4}\)

PT <=> \(\dfrac{3x-4}{4}-2x=5\)

<=> \(\dfrac{3x-4-8x}{4}=5\)

<=> \(-5x-4=20\)

<=> \(x=\dfrac{-24}{5}\left(l\right)\)

d) Xét (2-x)B = \(\dfrac{\left(2-x\right)\left(4-3x\right)}{4}\)  = \(\dfrac{3x^2-10x+8}{4}\)

\(\dfrac{3\left(x-\dfrac{5}{3}\right)^2-\dfrac{1}{3}}{4}\)

Mà \(3\left(x-\dfrac{5}{3}\right)^2\ge\) 0

=> (2-x)B \(\ge\dfrac{\dfrac{-1}{3}}{4}=\dfrac{-1}{12}\)

Dấu "=" <=> x = \(\dfrac{5}{3}\left(tm\right)\)

e) Số nguyên âm lớn nhất là -1

Để B = -1

<=> \(\dfrac{4-3x}{4}=-1\)

<=> 4 - 3x = -4
<=> \(x=\dfrac{8}{3}\left(tm\right)\)

g) 

TH1: \(x\le\dfrac{4}{3}\)

<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{4-3x}{4}\)

BDT <=> \(\dfrac{4-3x}{4}< 2x-4\)

<=> \(4-3x< 8x-16\)

<=> \(x>\dfrac{20}{11}\left(l\right)\)

TH2: \(x>\dfrac{4}{3}\)

<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{3x-4}{4}\)

BDT <=> \(\dfrac{3x-4}{4}< 2x-4\)

<=> \(3x-4< 8x-16\)

<=> x > \(\dfrac{12}{5}\)

KHDK: \(x>\dfrac{12}{5}\)

Nezuko Kamado
Xem chi tiết
Nezuko Kamado
31 tháng 10 2021 lúc 13:35

Ai lm đc câu nào thì giúp mk với , cảm ơn !!

Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 13:39

\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)

Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 13:48

a: \(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{5}\)

when the imposter is sus
Xem chi tiết