Chứng minh rằng :A=7.52n + 12.6n ( Với n \(\in\)N ) chia hết cho 19
Chứng minh rằng: với ∀ số tự nhiên n ta có: 7.52n+12.6n ⋮19
Ta có: \(7.5^{2n}+12.6^n\)
= \(7.5^{2n}+\left(19-7\right).6^n\)
= \(7.5^{2n}+19.6^n-7.6^n\)
= \(7\left(5^{2n}-6^n\right)+19.6^n\)
= \(7\left(25^n-6^n\right)+19.6^n\)
Có: \(19+6^n⋮19\)
\(7\left(25^n-6^n\right)⋮19\)
Vậy...................(đpcm)
2. CMR: 7.52n+12.6n chia hết cho 19
*Sử dụng đồng dư thức
Đặt \(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)
Do \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)
\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)
\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)
Do \(19.6^n⋮19\Rightarrow A⋮19\)
A = 7.52n + 12.6n
A = 7.(52)n + 12.6n
A = 7.25n + 12.6n
25 \(\equiv\) 6 (mod 19)
25n \(\equiv\) 6n (mod 19)
7 \(\equiv\) - 12 (mod 19)
⇒ 7.25n \(\equiv\) -12.6n (mod 19)
⇒ 7.25n -( -12.6n) ⋮ 19
⇒ 7.25n + 12.6n ⋮ 19
Ta có:
\(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)
Vì \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)
\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)
\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)
\(\Rightarrow A\equiv0\left(mod19\right)\)
Vậy ....
1.Chứng minh rằng \(2^{2^{6n+2}}+3⋮19\) với ,mọi n\(\in\)N
2.Chứng minh rằng với n>0 ta có 52n-1.22n-15n+1+3n+1.22n-1 chia hết cho 38
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
Bài 1 chứng minh rằng với mọi n thuộc N ta có:
a)A=n(n+40)(n+5)chia hết cho 3
b)B=n(n+14)(n+16) chia hết cho 3
c)C=n(n+19)(2n+7 chia hết cho 3
a, n=3k => n chia hết cho 3 => đpcm
n=3k+1 => n+5 chia hết cho 3 => đpcm
n=3k+2 => n+40 chia hết cho3 => đpcm
vậy ....
b, c tương tự
biết 3a+8b chia hết cho 19 ( a,b thuộc N ) chứng minh rằng 9a+5b chia hết cho 19
Giả sử 9a + 5b : 19
Khử a:
3a + 8b : 19 => 9.(3a + 8b) = 27a + 72b
9a + 5b : 19 => 3.(9a + 5b) = 27a + 15b
=> (27a + 72b) - (27a + 15b) = 27a + 72b - 27a - 15b = 57b = 19.3b : 19 (1)
Khử b:
3a + 8b : 19 => 5.(3a + 8b) = 15a + 40b
9a + 5b : 19 => 8.(9a + 5b) = 72a + 40b
=> (15a + 40b) - (72a + 40b) = 15a + 40b - 72a - 40b = 57a = 19.3b : 19 (2)
Từ (1) và (2) => 9a + 5b : 19
chứng minh rằng (22^6n+2+3) chia hết cho 19 với mọi n thuộc N
Lời giải:
$2^3\equiv -1\pmod 9$
$\Rightarrow 2^{6n}\equiv (-1)^{2n}\equiv 1\pmod 9$
$\Rightarrow 2^{6n+2}=2^{6n}.4\equiv 4\pmod 9$
$\Rightarrow 2^{6n+2}=9k+4$ với $k$ tự nhiên.
Vì $2^{6n+2}$ chẵn nên $9k$ chẵn $\Rightarrow k$ chẵn.
Khi đó:
\(2^{2^{6n+2}}+3=2^{9k+4}+3\)
$2^9\equiv -1\pmod {19}$
$\Rightarrow 2^{9k}\equiv (-1)^k\equiv 1\pmod {19}$ (do $k$ chẵn)
$\Rightarrow 2^{9k+4}\equiv 16\pmod {19}$
$\Rightarrow 2^{2^{6n+2}}+3=2^{9k+4}+3\equiv 16+3\equiv 19\equiv 0\pmod {19}$
Vậy $2^{2^{6n+2}}+3\vdots 19$