nghiệm của pt: (4x^4-1)(1+8x^3)(-x^3-2x)=0
Giải pt
(4x-3)^2-(2x+1)^2=0
3x-12-5x×(x-4)=0
(8x+2)×(x^2+5)×(x^2-4)=0
(4x - 3)2 - (2x + 1)2 = 0
\(\Leftrightarrow\) (4x - 3 - 2x - 1)(4x - 3 + 2x + 1) = 0
\(\Leftrightarrow\) (2x - 4)(6x - 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
3x - 12 - 5x(x - 4) = 0
\(\Leftrightarrow\) 3x - 12 - 5x2 + 20x = 0
\(\Leftrightarrow\) -5x2 + 23x - 12 = 0
\(\Leftrightarrow\) 5x2 - 23x + 12 = 0
\(\Leftrightarrow\) 5x2 - 20x - 3x + 12 = 0
\(\Leftrightarrow\) 5x(x - 4) - 3(x - 4) = 0
\(\Leftrightarrow\) (x - 4)(5x - 3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-4=0\\5x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy ...
(8x + 2)(x2 + 5)(x2 - 4) = 0
\(\Leftrightarrow\) (8x + 2)(x2 + 5)(x - 2)(x + 2) = 0
Vì x2 \(\ge\) 0 \(\forall\) x nên x2 + 5 > 0 \(\forall\) x
\(\Rightarrow\) (8x + 2)(x - 2)(x + 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}8x+2=0\\x-2=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=2\\x=-2\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt!
a) Ta có: \(\left(4x-3\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3-2x-1\right)\left(4x-3+2x+1\right)=0\)
\(\Leftrightarrow\left(2x-4\right)\left(6x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{2;\dfrac{1}{3}\right\}\)
b) Ta có: \(3x-12-5x\left(x-4\right)=0\)
\(\Leftrightarrow3\left(x-4\right)-5x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{4;\dfrac{3}{5}\right\}\)
c) Ta có: \(\left(8x+2\right)\left(x^2+5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow2\left(4x+1\right)\left(x^2+5\right)\left(x-2\right)\left(x+2\right)=0\)
mà \(2>0\)
và \(x^2+5>0\forall x\)
nên \(\left(4x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-1\\x=2\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=2\\x=-2\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{4};2;-2\right\}\)
1. C/m pt sau vô nghiệm
x^4 - 2x^3 + 3x^2 - 2x + 1 =0
2.giải pt
(x^2-4)^2=8x + 1
1. \(x^4-2x^3+3x^2-2x+1=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)+x^2=0\)
\(\Leftrightarrow x^2\left(x-1\right)^2+\left(x-1\right)^2+x^2=0\)
\(\Leftrightarrow\) (x - 1)2 = 0 và x2 = 0
\(\Leftrightarrow\) x - 1 = 0 và x = 0
\(\Leftrightarrow\) x = 1 và x = 0 (vô lí)
Vậy phương trình vô nghiệm.
2. \(\left(x^2-4\right)^2=8x+1\)
\(\Leftrightarrow x^4-8x^2+16=8x+1\)
\(\Leftrightarrow x^4-8x^2-8x+15=0\)
\(\Leftrightarrow x^4-x^3+x^3-x^2-7x^2+7x-15x+15=0\)
\(\Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)-7x\left(x-1\right)-15\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-7x-15\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4x^2-12x+5x-15\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)+4x\left(x-3\right)+5\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2+4x+5\right)=0\)
\(\Leftrightarrow\) x - 1 = 0 hoặc x - 3 = 0 hoặc x2 + 4x + 5 = 0
1) x - 1 = 0 \(\Leftrightarrow\) x = 1
2) x - 3 = 0 \(\Leftrightarrow\) x = 3
3) \(x^2+4x+5=0\left(\text{loại vì }x^2+4x+5=\left(x+2\right)^2+1>0\forall x\right)\)
Vậy tập nghiệm của pt là S = {1;3}.
1, x2+mx+4=0 tìm m để pt có 2 nghiệm tm \(\frac{1}{x^4_1}+\frac{1}{x^4_2}=\frac{257}{256}\)
2, 8x2 -8x+m2+1=0 tìm m để t có 2 nghiệm pb tm (4x1+5)(4x2+5)+19=0
3, x2 -6x +m -3=0 tìm m để pt có 2 nghiệm pb tm (x1-1)(x22-5x2+m-4)=2
4, 2x2 -4mx +2m2-1=0 tìm m để pt có 2 nghiệm tm 2x12+4mx2+2m2-1\(\ge\)0
5, x2 -2(m-1)x+m2=0 tìm m để pt có 2 nghiệm tm (x1-x2)2 +6m=x1-2x2
Các bài này đều có phương pháp làm giống nhau
Bài 1:
Để pt có 2 nghiệm $x_1,x_2$ thì $\Delta=m^2-16\geq 0$
$\Leftrightarrow m\geq 4$ hoặc $m\leq -4(*)$
Áp dụng định lý Vi-et ta có: \(\left\{\begin{matrix} x_1+x_2=-m\\ x_1x_2=4\end{matrix}\right.\)
Khi đó:
\(\frac{1}{x_1^4}+\frac{1}{x_2^4}=\left(\frac{1}{x_1^2}+\frac{1}{x_2^2}\right)^2-\frac{2}{(x_1x_2)^2}=\frac{(x_1^2+x_2^2)^2}{(x_1x_2)^4}-\frac{2}{(x_1x_2)^2}\)
\(=\frac{[(x_1+x_2)^2-2x_1x_2]^2}{(x_1x_2)^4}-\frac{2}{(x_1x_2)^2}=\frac{(m^2-8)^2}{256}-\frac{2}{16}=\frac{257}{256}\)
\(\Leftrightarrow (m^2-8)^2-32=257\)
\(\Leftrightarrow (m^2-8)^2=289\Rightarrow m^2-8=\pm 17\)
\(\Rightarrow m^2=25\Rightarrow m=\pm 5\) (đều thỏa mãn $(*))$
Vậy $m=\pm 5$
Bài 3:
Để pt có 2 nghiệm phân biệt $x_1,x_2$ thì:
$\Delta'=9-(m-3)>0\Leftrightarrow m< 12$
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=6\\ x_1x_2=m-3\end{matrix}\right.\)
Khi đó:
$(x_1-1)(x_2^2-5x_2+m-4)=2$
$\Leftrightarrow (x_1-1)(x_2^2-6x_2+m-3+x_2-1)=2$
$\Leftrightarrow (x_1-1)(x_2-1)=2$ (nhớ rằng $x_2^2-6x_2+m-3=0$ do $x_2$ là nghiệm của pt $x^2-6x+m-3=0$)
$\Leftrightarrow x_1x_2-(x_1+x_2)+1=2$
$\Leftrightarrow m-3-6+1=2$
$\Leftrightarrow m=10$ (thỏa mãn)
Vậy $m=10$
Bài 2:
Để pt có 2 nghiệm phân biệt thì:
$\Delta'=16-8(m^2+1)>0$
$\Leftrightarrow 2-(m^2+1)>0\Leftrightarrow m^2-1< 0$
$\Leftrightarrow -1< m< 1$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=1\\ x_1x_2=\frac{m^2+1}{8}\end{matrix}\right.\)
Khi đó:
$(4x_1+5)(4x_2+5)+19=0$
\(\Leftrightarrow 16x_1x_2+20(x_1+x_2)+44=0\)
\(\Leftrightarrow 2(m^2+1)+20+44=0\Leftrightarrow m^2=-33< 0\) (vô lý)
Vậy không tồn tại $m$ thỏa mãn ycđb
giải pt
a, 2x^3++3x^2-8x-12=0
b, x^3-4x^2-x+4=0
c,x^3-x^2-x-2=0
d,x^4-3x^3+3x^2-x=0
e,(x+1)(x^2-2x+3)=x^3+1
g,x^3+3x^2+3x+1=4x+4
a) \(2x^3+3x^2-8x-12=0\)
\(\Leftrightarrow\left(2x^3-8x\right)+\left(3x^2-12\right)=0\)
\(\Leftrightarrow2x\left(x^2-4\right)+3\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\)\(x-2=0\)
hoặc \(x+2=0\)
hoặc \(2x+3=0\)
\(\Leftrightarrow\)\(x=2\)
hoặc \(x=-2\)
hoặc \(x=-\frac{3}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-\frac{3}{2}\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(x-4=0\)
hoặc \(x-1=0\)
hoặc \(x+1=0\)
\(\Leftrightarrow\)\(x=4\)
hoặc \(x=1\)
hoặc \(x=-1\)
Vậy tập nghiệm của phương trình là \(S=\left\{4;1;-1\right\}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^2+x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
d) \(x^4-3x^3+3x^2-x=0\)
\(\Leftrightarrow x\left(x^3-3x^2+3x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;1\right\}\)
e) \(\left(x+1\right)\left(x^2-2x+3\right)=x^3+1\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)=\left(x+1\right)\left(x^2-x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-2x+3=x^2-x+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)
g) \(x^3+3x^2+3x+1=4x+4\)
\(\Leftrightarrow\left(x+1\right)^3=4\left(x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x+1=\pm2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\) hoặc \(x=1\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;1;-3\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\pm1\end{cases}}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow x=2\) ( Do \(x^2+x+1>0\) )
a) \(2x^3+3x^2-8x-12=0\)
\(\Leftrightarrow x^2\left(2x+3\right)-4\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=\pm2\end{cases}}\)
cho pt 8x^2 - 8x + m^2 + 1 = 0
a) định m để pt có nghiệm x = 1/2
b) định m để pt có 2 nghiệm thỏa dk : x1^4 - x2^4 = x1^3 - x2^3
HELP ME
Bài 1:Giải các phương trình sau:
A) x^3-2x-4=0
B)x^3+8x^2+17x+10=0
C)x^3+3x^2+6x+4=0
Bài 2: CM các PT sau vô nghiệm
A) x^4-x^3+x^2-x+1=0
B) x^4-2x^3+4x^2-3x+2
B1.a/ (x-2)(x^2+2x+2)
b/ (x+1)(x+5)(x+2)
c/ (x+1)(x^2+2x+4)
B2.
1a) x3 - 2x - 4 = 0
<=> (x3 - 4x) + (2x - 4) = 0
<=> x(x2 - 4) + 2(x - 2) = 0
<=> x(x - 2)(x + 2) + 2(x - 2) = 0
<=> (x - 2)(x2 + 2x + 2) = 0
<=> x - 2 = 0 (vì x2 + 2x + 2 \(\ne\)0)
<=> x = 2
Vậy S = {2}
b) x3 + 8x2 + 17x + 10 = 0
<=> (x3 + 5x2) + (3x2 + 15x) + (2x + 10) = 0
<=> x2(x + 5) + 3x(x + 5) + 2(x + 5) = 0
<=> (x2 + 3x + 2)(x + 5) = 0
<=> (x2 + x + 2x + 2)(x + 5) = 0
<=> (x + 1)(x + 2)(x + 5) = 0
<=> x + 1 = 0 hoặc x + 2 = 0 hoặc x + 5 = 0
<=> x = -1 hoặc x = -2 hoặc x = -5
Vậy S = {-1; -2; -5}
c) x3 + 3x2 + 6x + 4 = 0
<=> (x3 + x2) + (2x2 + 2x) + (4x + 4) = 0
<=> x2(x + 1) + 2x(x + 1) + 4(x + 2) = 0
<=> (x2 + 2x + 4)(x + 2) = 0
<=> x + 2 = 0
<=> x = -2
Vậy S = {-2}
tìm m để pt có nghiệm thuộc \(\left[-1;1\right]\)
x^4+2x^3+5x^2+4x-1-m=0
\(x^4+2x^3+5x^2+4x-1-m=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+4\left(x^2+x\right)-1-m=0\left(1\right)\)
\(đặt:x^2+x=t\ge\dfrac{-\Delta}{4a}=-\dfrac{1}{4}\)
\(\left(1\right)\Leftrightarrow t^2+4t-1-m=0\) có nghiệm trên \([-\dfrac{1}{4};\text{+∞})\)
\(f\left(t\right)=t^2+4t-1=m\)
\(f\left(-\dfrac{b}{2a}\right)=-5\)
\(f\left(-\dfrac{1}{4}\right)=-\dfrac{31}{16}\Rightarrow m\ge-\dfrac{31}{16}\Rightarrow\left[{}\begin{matrix}t=\dfrac{-b}{2a}=-2\Rightarrow x^2+x+2=0\left(vô-nghiệm\right)\left(loại\right)\\\left\{{}\begin{matrix}t1=\dfrac{-4+\sqrt{20+4m}}{2}=-2+\sqrt{5+m}\\t2=\dfrac{-4-\sqrt{20+4m}}{2}=-2-\sqrt{5+m}\end{matrix}\right.\end{matrix}\right.\)
\(x^2+x=t1=-2+\sqrt{5+m}\Leftrightarrow f\left(x\right)=x^2+x+2=\sqrt{5+m}\) có nghiệm thuộc \(\left[-1;1\right]\)
\(\Rightarrow f\left(-\dfrac{b}{2a}\right)=\dfrac{7}{4}\)
\(f\left(-1\right)=2;f\left(1\right)=4\)
\(\Rightarrow\dfrac{7}{4}\le\sqrt{5+m}\le4\Leftrightarrow\dfrac{-31}{16}\le m\le11\)
\(x^2+x=t2=-2-\sqrt{5+m}\Leftrightarrow f\left(x\right)=x^2+x+2=-\sqrt{5+m}\)
có nghiệm trên \(\left[-1;1\right]\)
\(x^2+x+2>0\Rightarrow x^2+x+2=-\sqrt{5+m}< 0\left(vô-lí\right)\Rightarrow vô-nghiệm\forall m\)
\(\Rightarrow\dfrac{-31}{16}\le m\le11\) thì pt có nghiệm thuộc \(\left[-1;1\right]\)
Giải pt \(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)
Giúp tớ với.
Bài 1 : cho pt : 4x^2 - 25 + k^2 + 4kx = 0
1. Giải pt với k =0
2. Giải pt với k = -3
3. Tìm các giá trị của k để pt nhận nghiệm là 2.
Bài 2 : Tính
1. x + 1/x-1 ( dấu / là phân số nhé ) - x-1/ x+1 = 16/x^2 - 1
2. 12/x^2-4 - x+1/x-2 + x+7/x+2 = 0
3. 12/8+x^3 = 1 + 1/1+2
4. x + 25/2x^2-50 - x+5/x^2-5x = 5-x/2x^2+10
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự