chung minh rang neu kthuoc n* thi ta co
k(k+1)(k+2)-(k-1)k(k+1)=3k(k+1)
chung minhn ta luom co k(k+1)(k+2)-(k-1)k(k+1)=3k(k+1)
=k(k+1)(k+2-k+1)
= k(k+1)x3
=3k(k+1)(dpcm)
đúng k pạn...? hihi
chứng minh ; Với k= N* ta luon co;
k(k+1) (k+2)-(k-1)k(k+1)=3k(k+1)
Chứng minh : Với k E N* ta luôn có :
k(k+1)(k+2)-(k-1)k(k+1)=3k(k+1)
Ta có : \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\)
\(=\left(k^2+k\right)\left(k+2\right)-\left(k^2-k\right)\left(k+1\right)\)
\(=k^3+2k^2+k^2+2k-k^3+k\)
\(=3k^2+3k\)
\(=3k\left(k+1\right)\left(VP\right)\)
\(\Rightarrowđpcm\)
k(k+1)(k+2) -(k-1)k(k+1)
=k(k+1)(k + 2 - k + 1)
= 3k(k+1) đpcm
Chứng minh rằng : với k ϵ N ta luôn có
k(k+1)(k+2)-(k-1)k(k+1) = 3k(k+1)
Chứng minh : với k thuộc N* ta luôn có: k(k +1 )(k+2)-(k-1)k(k+1)=3k(k+1)
Áp dụng tính tổng 1.2+2.3+3.4+...+n(n+1)
chung minh rang:
k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)=4k(k+1)(k+2)
k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
=k(k+1)(k+2).[(k+3)-(k-1)
=4k(k+1)(k+2)
=>Dqcm
Bài 1:
a) Chứng minh: Với k thuộc N* ta luôn có: k.(k+1).(k+2)-(k-1).k.(k+1)=3k(k+1)
b) Áp dụng tính tổng: S=1.2+2.3+3.4+...+n.(n+1)
chứng minh rằng :với k thuộc N*ta luôn có :
k(k+1).k(k+2)-(k-1).k(k+1)=3k.(k+1)
Áp dụng để tính tổng :S = 1.2+2.3+3.4+....+n.(n+1)
Chứng minh rằng với k \(\in\) N* ta luôn có \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\)
Ta có:
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =k\left(k+1\right)\left[\left(k-2\right)-\left(k-1\right)\right]\\ =k\left(k+1\right)\left[k-2-k+1\right]\\ =k\left(k+1\right)\left\{\left[k+\left(-k\right)\right]+\left(2+1\right)\right\}\\ =k\left(k+1\right).3\\ =3.k\left(k+1\right)\)
Vậy \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =3.k.\left(k+1\right)\)
Ta có:
\(VT=k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\)
\(=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]\)
\(=k\left(k+1\right)\left[k+2-k+1\right]\)
\(=k\left(k+1\right)\left[\left(k-k\right)+\left(2+1\right)\right]\)
\(=k\left(k+1\right).3\)
\(=3k\left(k+1\right)\)
\(\Rightarrow VT=VP\)
Vậy với \(k\in N\)* thì ta luôn có:
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\) (Đpcm)