Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
kim ánh

Những câu hỏi liên quan
nhím
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 15:30

e: \(\left(a^2-1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)

\(=\left(a^3-1\right)\left(a^3+1\right)\)

\(=a^6-1\)

Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 0:13

b: Ta có: \(\left(1+x+x^2\right)\left(1-x\right)\left(1+x\right)\left(1-x+x^2\right)\)

\(=\left(1-x^3\right)\left(1+x^3\right)\)

\(=1-x^6\)

c: \(\left(a+1\right)\left(a+2\right)\left(a^2+4\right)\left(a-1\right)\left(a^2+1\right)\left(a-2\right)\)

\(=\left(a+1\right)\left(a-1\right)\left(a^2+1\right)\left(a+2\right)\left(a-2\right)\left(a^2+4\right)\)

\(=\left(a^2-1\right)\left(a^2+1\right)\left(a^2-4\right)\left(a^2+4\right)\)

\(=\left(a^4-1\right)\left(a^4-16\right)\)

\(=a^8-17a^4+16\)

d: \(\left(a^3+3\right)\left(a^6-3a^3+9\right)\)

\(=\left(a^3\right)^3+3^3\)

\(=a^9+27\)

Yeutoanhoc
Xem chi tiết
Đặng Khánh
5 tháng 6 2021 lúc 16:05

Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)

\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)

Dấu "=" \(x=y=\dfrac{1}{2}\)

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 9:19

Câu a bạn sửa lại đề 11→1

\(a,VT=\dfrac{a^2-2a+1}{\left(a-1\right)\left(a^2+1\right)}\cdot\dfrac{a^2+1}{a^2+a+1}\\ =\dfrac{\left(a-1\right)^2}{\left(a-1\right)\left(a^2+a+1\right)}=\dfrac{a-1}{a^2+a+1}=VP\)

\(b,=\left[\dfrac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}-x\right]\cdot\dfrac{\left(1+x\right)\left(1-x^2\right)}{1+x}\\ =\dfrac{\left(x^2+1\right)\left(1+x\right)\left(1-x^2\right)}{1+x}=\left(x^2+1\right)\left(1-x^2\right)=VP\)

mai uyên lan
Xem chi tiết
thiyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2023 lúc 22:08

a: \(A=\dfrac{1}{2a-1}\cdot\sqrt{5a^2}\cdot\left|2a-1\right|\)

\(=\dfrac{2a-1}{2a-1}\cdot a\sqrt{5}=a\sqrt{5}\)(do a>1/2)

b: \(A=\dfrac{\sqrt{x-1-2\sqrt{x-1}+1}}{\sqrt{x-1}-1}+\dfrac{\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x-1}+1}\)

\(=\dfrac{\left|\sqrt{x-1}-1\right|}{\sqrt{x-1}-1}+\dfrac{\sqrt{x-1}+1}{\sqrt{x-1}+1}\)

\(=\dfrac{\sqrt{x-1}-1}{\sqrt{x-1}-1}+1=1+1=2\)

c:

\(=\dfrac{a+b}{b^2}\cdot\dfrac{ab^2}{a+b}=a\)

d: Sửa đề: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(1+\sqrt{a}+a+\sqrt{a}\right)\cdot\left(\dfrac{1}{1+\sqrt{a}}\right)^2\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)

e:

\(A=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}=\dfrac{1}{x-1}\)

f:

\(A=\sqrt{\dfrac{m}{\left(1-x\right)^2}\cdot\dfrac{4m\left(1-2x+x^2\right)}{81}}\)

\(=\sqrt{\dfrac{m}{\left(x-1\right)^2}\cdot\dfrac{4m\left(x-1\right)^2}{81}}\)

\(=\sqrt{\dfrac{4m^2}{81}}=\dfrac{2m}{9}\)

 

Nguyen Anh Duc
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 6 2023 lúc 22:18

1: =(8+a^3)(8-a^3)=64-a^6

2: =x^3-6x^2+12x-8-x(x^2-1)+6x^2-18x

=x^3-6x-8-x^3+x

=-5x-8

3: =x^3+3x^2+3x+1-x^3+1-3x^2-3x

=2

Loan Tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 1 2024 lúc 18:54

Câu 1:

b: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)

\(\dfrac{1}{x-3}-\dfrac{1}{x+3}+\dfrac{2x}{9-x^2}\)

\(=\dfrac{1}{x-3}-\dfrac{1}{x+3}-\dfrac{2x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x+3-x+3-2x}{\left(x-3\right)\left(x+3\right)}=\dfrac{-2x+6}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=-\dfrac{2}{x+3}\)

c: ĐKXĐ: \(x\notin\left\{2;0\right\}\)

Sửa đề: \(\dfrac{x+1}{x-2}+\dfrac{4-5x}{x^3+4x}:\dfrac{x-2}{x^2+4}\)

\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x^2+4\right)}\cdot\dfrac{x^2+4}{x-2}\)

\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x-2\right)}\)

\(=\dfrac{x\left(x+1\right)+4-5x}{x\left(x-2\right)}=\dfrac{x^2+x-5x+4}{x\left(x-2\right)}\)

\(=\dfrac{x^2-4x+4}{x\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}=\dfrac{x-2}{x}\)

Nguyễn Linh Anh
Xem chi tiết
Hoàng Ngọc Tuyết Nhung
Xem chi tiết
Phan Thành Tiến
19 tháng 7 2018 lúc 7:59

a)\(\frac{1}{a+b-x}\)=\(\frac{1}{a}\)+\(\frac{1}{b}\)-\(\frac{1}{x}\)\(\Leftrightarrow\)\(\frac{1}{a+b-x}\)+\(\frac{1}{x}\)=\(\frac{a+b}{ab}\)\(\Leftrightarrow\)\(\frac{x+a+b-x}{x\left(a+b-x\right)}\)=\(\frac{a+b}{ab}\)

\(\Leftrightarrow\)\(\frac{a+b}{xa+xb-x^2}\)=\(\frac{a+b}{ab}\)\(\Leftrightarrow\)\(xa+xb-x^2\)=\(ab\)\(\Leftrightarrow\)\(xa+xb-x^2-ab\)=\(0\)

\(\Leftrightarrow\)\(a\left(x-b\right)-x\left(x-b\right)=0\)\(\Leftrightarrow\)\(\left(x-b\right)\left(a-x\right)=0\)\(\Leftrightarrow\)\(x=b;x=a\)

b) \(\Leftrightarrow\)\(\frac{1}{\left(x+a-1\right)\left(x+a+1\right)}+\frac{1}{\left(x+a+1\right)\left(x-a+1\right)}\)=\(\frac{1}{\left(x-a-1\right)\left(x+a+1\right)}+\frac{1}{\left(x-a+1\right)\left(x+a-1\right)}\)\(\Leftrightarrow\)\(\frac{1}{\left(x+a-1\right)\left(x+a+1\right)}-\frac{1}{\left(x-a-1\right)\left(x+a+1\right)}\)=\(\frac{1}{\left(x-a+1\right)\left(x+a-1\right)}-\frac{1}{\left(x+a+1\right)\left(x-a+1\right)}\)\(\Leftrightarrow\)\(\frac{1}{\left(x+a+1\right)}\left(\frac{1}{x+a-1}-\frac{1}{x-a-1}\right)\)=\(\frac{1}{x-a+1}\left(\frac{1}{x+a-1}-\frac{1}{x+a+1}\right)\)\(\Leftrightarrow\)\(\frac{1}{x+a+1}.\frac{-2a}{\left(x+a-1\right)\left(x-a-1\right)}=\frac{1}{x-a+1}.\frac{2}{\left(x+a-1\right)\left(x+a+1\right)}\)(Quy dong phan so ttrong dau ngoac)

\(\Leftrightarrow\)\(\frac{-2a}{x-a-1}=\frac{2}{x-a+1}\)\(\Leftrightarrow\)\(-2a\left(x-a+1\right)=2\left(x-a-1\right)\)\(\Leftrightarrow\)\(-ax+a^2-a=x-a-1\)\(\Leftrightarrow\)\(-ax-x+a^2-1=0\)\(\Leftrightarrow\)\(\left(a+1\right)\left(-x+a-1\right)=0\)

neu a+1=0 thi phuong trinh co vo so nghiem, neu a+1\(\ne\)0 thi x=a-1

Lê Thanh Dương
Xem chi tiết