Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nhattien nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 13:13

Câu 1: B

Câu 2: A

Câu 3: C

Câu 4: D

Câu 5: A

Câu 6: B

Thanh Tu Nguyen
Xem chi tiết
Nguyễn Ngọc Anh Minh
9 tháng 11 2023 lúc 8:16

 

1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)

\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)

2/

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)

\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)

\(\Rightarrow P_{min}=18\)

Alice Sophia
Xem chi tiết
alibaba nguyễn
17 tháng 6 2017 lúc 10:48

\(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)

\(=\sqrt{a\left(a+b+c\right)+bc}+\sqrt{b\left(a+b+c\right)+ca}+\sqrt{c\left(a+b+c\right)+ab}\)

\(=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\)

\(\le\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}+\frac{c+a+c+b}{2}\)

\(=2\left(a+b+c\right)=4\)

Dấu = xảy ra khi \(a=b=c=\frac{2}{3}\)

02-Nguyễn Thiện Anh
Xem chi tiết
A Nụ
Xem chi tiết
YangSu
21 tháng 2 2023 lúc 16:33

\(P=\left(a^2+b\right)-\left(2a^2+b\right)+2\left(ab+2021\right)\)

\(=a^2+b-2a^2-b+2ab+4042\)

\(=-a^2+2ab+4042\)

\(=-a\left(a-2b\right)+4042\)

Đề cho \(a-2b=2021\)

\(\Rightarrow P=-a.2021+4042\)

\(=-2021a+4042\)

Vậy \(P=-2021a+4042\)

bui huy
14 tháng 2 lúc 17:25

4042 thêm b vào

 

Hoàng Thùy Dương
Xem chi tiết
Nguyễn Trí Nghĩa
20 tháng 3 2021 lúc 17:23

\(\dfrac{a}{6}=\dfrac{b}{9}\)

\(\Leftrightarrow9a=6b\)

\(\Rightarrow3a=2b\)(chia cả 2 vế cho 3)

\(\Rightarrow3a-2b=0\Rightarrow\dfrac{3a-2b}{3a+2b}=0\)

Chúc bn học tốt

Nguyễn Đình Mạnh
20 tháng 3 2021 lúc 17:33

Ta có: `a/6 = b/9` `-> 9a = 6b`

`-> 3a = 2b`

Vì `3a = 2b` nên `3a - 2b = 0`.

`-> A = (3a - 2b)/(3a + 2b) = 0/(3a + 2b) = 0` 

Vậy giá trị biểu thức `A` là `0`.

b

Đồ Ngốc
Xem chi tiết
Empty AA
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 7 2019 lúc 5:46

Áp dụng bất đẳng thức trên ta có  ( 1 + a 2 ) ( 1 + b 2 ) ≥ 1 + a b = 1 + a + b (1)

Với mọi x, y > 0, áp dụng bất đẳng thức Côsi cho 2 số dương ta có:

1 x + 1 y ( x + y ) ≥ 2 1 x . 1 y .2 x y = 4 ⇒ 1 x + 1 y ≥ 4 x + y (2)

Áp dụng (1) và (2) ta có:

P ≥ 4 a 2 + 2 a + b 2 + 2 b + 1 + a + b = 4 a 2 + b 2 + 2 a b + 1 + a + b = 4 ( a + b ) 2 + a + b 8 + 7 ( a + b ) 8 + 1

Áp dụng bất đẳng thức Côsi cho 2 số dương ta có:

a + b = a b ≤ ( a + b ) 2 4 ⇒ ( a + b ) 2 ≥ 4 ( a + b ) ⇒ a + b ≥ 4

Áp dụng bất đẳng thức Côsi cho 2 số dương ta có:

4 ( a + b ) 2 + a + b 16 + a + b 16 ≥ 3 4 ( a + b ) 2 . a + b 16 . a + b 16 3 = 3 4 ⇒ P ≥ 3 4 + 7 8 .4 + 1 = 21 4

Dấu bằng xảy ra khi a = b = 2. Vậy giá trị nhỏ nhất của P là 21/4