Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Duy
Xem chi tiết
Thuỳ An Nguyễn Thị
Xem chi tiết
Phong
26 tháng 4 2023 lúc 14:25

 Câu 5. Tìm các số x thỏa mãn cả hai bất phương trình sau x>3 và x<8

A. x<8  

b. 3<x<8

c. 3>x>8

d. x>3

câu 6: tìm các số x thỏa mãn cả 2 bất phương trình sau x>5 và x>3

A. x<5

B. 3<x<5

C. x>3

D. c>5

Võ Thị Kim Dung
Xem chi tiết
time lord
Xem chi tiết
dbrby
Xem chi tiết
Ngô Kim Tuyền
13 tháng 8 2019 lúc 11:34

Ta có: \(\frac{5a^3-b^3}{ab+3a^2}=\frac{3a^3-b^3}{ab+3a^2}+\frac{2a^3}{ab+3a^2}\)

\(=a-\frac{a^2b+b^3}{ab+3a^2}+\frac{2a^3}{ab+3a^2}\)

= \(a-\frac{b\left(a^2+b^2\right)}{a\left(b+3a\right)}+\frac{2a^3}{a\left(b+3a\right)}\) (1)

Áp dụng BĐT AM - GM ( x2 + y2 \(\ge2xy\)) ta có:

(1) \(\le a-\frac{2ab^2}{a\left(b+3a\right)}+\frac{2a^2}{b+3a}\) = \(a-\frac{2b^2}{b+3a}+\frac{2a^2}{b+3a}\) (2)

Tương tự ta cũng có:

\(\frac{5b^3-c^3}{bc+3b^2}\le b-\frac{2c^2}{c+3b}+\frac{2b^2}{c+3b}\left(3\right)\)

\(\frac{5c^3-a^2}{ca+3c^2}\)\(\le c-\frac{2a^2}{a+3c}+\frac{2c^2}{a+3c}\)(4)

Từ (2), (3), (4) \(\Rightarrow\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ca+3c^2}\le a+b+c+\left(\frac{2a^2}{a+3c}-\frac{2a^2}{a+3c}\right)+\left(\frac{2b^2}{b+3c}-\frac{2b^2}{b+3c}\right)+\left(\frac{2c^2}{c+3a}-\frac{2c^2}{c+3a}\right)=a+b+c\le2018\)

Vậy \(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ca+3c^2}\le2018\)

Hồ Quỳnh Thơ
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
4 tháng 9 2017 lúc 9:20

Ta có : \(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}=\frac{3a+9}{15}=\frac{5b-10}{15}=\frac{5c-5}{35}=\frac{3a+9-5b+10+5c-5}{15-15+35}=\frac{86+14}{35}\)

\(=\frac{100}{35}=\frac{20}{7}\)

Nên : bạn thay vào từng cái 1 nhé mình mỏi tay :D

Nguyễn Thị Yến Nga
Xem chi tiết
Diệu Huyền
4 tháng 1 2020 lúc 16:26

Áp dụng BĐT Cauchy- Schwarz, ta được:

\(\sqrt{4a+5b}+\sqrt{4b+5c}+\sqrt{4c+5a}\le\sqrt{\left(1^2+1^2+1^2\right)\left(4a+5b+4b+5c+4c+5a\right)}\)

\(=\sqrt{3\left(9a+9b+9c\right)}=\sqrt{3.9\left(a+b+c\right)}=\sqrt{3.9.3}=9\)

\(\RightarrowĐpcm\)

Khách vãng lai đã xóa
Yukino Quỳnh Trang
Xem chi tiết
Bùi Ngọc Minh Duy
25 tháng 7 2015 lúc 19:55

1. 2a = 3b ; 5b =7c
Từ giả thiết 2a = 3b => \(\frac{a}{3}=\frac{b}{2}\)=>\(\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}=>\frac{a}{21}=\frac{b}{14}\)
                 5b = 7c => \(\frac{b}{7}=\frac{c}{5}=>\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}=>\frac{b}{14}=\frac{c}{10}\)
Do đó: \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\) và 3a + 5c -7b = 30
Ta đặt \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=k\)
Suy ra a= 21k, b= 14k, c= 10k
Theo giả thiết: 3a + 5c - 7b = 30 =>3.21k + 5.10k - 7.14k = 30
                                               =>63k + 50k - 98k= 30 => 15k = 30=> k= 2
Vậy a = 21.2=42
       b = 14.2= 28
       c = 10.2=20.
2. Bạn giải như bài trên nha!

La Lan Hương
20 tháng 7 2016 lúc 16:52

bn ơi tại sao lại có 1/7 vậy

Đào Thị Hồng Ngọc
Xem chi tiết
zZz Cool Kid_new zZz
6 tháng 8 2020 lúc 19:53

Ta đi chứng minh: \(\frac{5b^3-a^3}{ab+3b^3}\le2b-a\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)

Một cách tương tự:\(\frac{5c^3-b^3}{bc+3c^3}\le2c-b;\frac{5a^3-c^3}{ca+3a^2}\le2a-c\)

Cộng lại thì:

\(LHS\le a+b+c=3\)

Đẳng thức xảy ra tại a=b=c=1

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Akai Haruma
13 tháng 4 2021 lúc 14:27

Lời giải:

Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.

Áp dụng vào bài:

$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$

$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$

Tương tự:

$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$

Cộng theo vế:

$\Rightarrow \text{VT}\leq a+b+c=3$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$